» Articles » PMID: 29873290

Melanocortin 1 Receptor Targeted Imaging of Melanoma With Gold Nanocages and Positron Emission Tomography

Overview
Journal Mol Imaging
Publisher Sage Publications
Specialty Radiology
Date 2018 Jun 7
PMID 29873290
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: Melanoma is a lethal skin cancer with unmet clinical needs for targeted imaging and therapy. Nanoscale materials conjugated with targeting components have shown great potential to improve tumor delivery efficiency while minimizing undesirable side effects in vivo. Herein, we proposed to develop targeted nanoparticles for melanoma theranostics.

Method: In this work, gold nanocages (AuNCs) were conjugated with α-melanocyte-stimulating hormone (α-MSH) peptide and radiolabeled with Cu for melanocortin 1 receptor-(MC1R) targeted positron emission tomography (PET) in a mouse B16/F10 melanoma model.

Results: Their controlled synthesis and surface chemistry enabled well-defined structure and radiolabeling efficiency. In vivo pharmacokinetic evaluation demonstrated comparable organ distribution between the targeted and nontargeted AuNCs. However, micro-PET/computed tomography (CT) imaging demonstrated specific and improved tumor accumulation via MC1R-mediated delivery. By increasing the coverage density of α-MSH peptide on AuNCs, the tumor delivery efficiency was improved.

Conclusion: The controlled synthesis, sensitive PET imaging, and optimal tumor targeting suggested the potential of targeted AuNCs for melanoma theranostics.

Citing Articles

Multifunctional gold nanoparticles for cancer theranostics.

Fernandes D 3 Biotech. 2024; 14(11):267.

PMID: 39416669 PMC: 11473483. DOI: 10.1007/s13205-024-04086-4.


Gold nanostructures in melanoma: Advances in treatment, diagnosis, and theranostic applications.

Dastgheib Z, Abolmaali S, Farahavar G, Salmanpour M, Tamaddon A Heliyon. 2024; 10(15):e35655.

PMID: 39170173 PMC: 11336847. DOI: 10.1016/j.heliyon.2024.e35655.


Optimization of the Synthesis and Radiolabeling of ZIF-8 Nanoparticles.

Ahmadi M, Asadian E, Mosayebnia M, Dadashzadeh S, Shahhosseini S, Ghorbani-Bidkorpeh F Iran J Pharm Res. 2024; 23(1):e144928.

PMID: 39108649 PMC: 11302435. DOI: 10.5812/ijpr-144928.


Clinical Peptidomics: Advances in Instrumentation, Analyses, and Applications.

Li L, Wu J, Lyon C, Jiang L, Hu T BME Front. 2023; 4:0019.

PMID: 37849662 PMC: 10521655. DOI: 10.34133/bmef.0019.


Neuroendocrine Factors in Melanoma Pathogenesis.

Scheau C, Draghici C, Ilie M, Lupu M, Solomon I, Tampa M Cancers (Basel). 2021; 13(9).

PMID: 34068618 PMC: 8126040. DOI: 10.3390/cancers13092277.


References
1.
Jorgensen J, Persson M, Madsen J, Kjaer A . High tumor uptake of (64)Cu: implications for molecular imaging of tumor characteristics with copper-based PET tracers. Nucl Med Biol. 2013; 40(3):345-50. DOI: 10.1016/j.nucmedbio.2013.01.002. View

2.
Skrabalak S, Au L, Li X, Xia Y . Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc. 2007; 2(9):2182-90. DOI: 10.1038/nprot.2007.326. View

3.
You S, Luo J, Grossniklaus H, Gou M, Meng K, Zhang Q . Nanomedicine in the application of uveal melanoma. Int J Ophthalmol. 2016; 9(8):1215-25. PMC: 4990589. DOI: 10.18240/ijo.2016.08.20. View

4.
Garbe C, Eigentler T, Keilholz U, Hauschild A, Kirkwood J . Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist. 2011; 16(1):5-24. PMC: 3228046. DOI: 10.1634/theoncologist.2010-0190. View

5.
Geukes Foppen M, Boogerd W, Blank C, van Thienen J, Haanen J, Brandsma D . Clinical and radiological response of BRAF inhibition and MEK inhibition in patients with brain metastases from BRAF-mutated melanoma. Melanoma Res. 2018; 28(2):126-133. DOI: 10.1097/CMR.0000000000000429. View