» Articles » PMID: 29789390

The Assembly of Lipid Droplets and Their Roles in Challenged Cells

Overview
Journal EMBO J
Date 2018 May 24
PMID 29789390
Citations 99
Authors
Affiliations
Soon will be listed here.
Abstract

Cytoplasmic lipid droplets are important organelles in nearly every eukaryotic and some prokaryotic cells. Storing and providing energy is their main function, but they do not work in isolation. They respond to stimuli initiated either on the cell surface or in the cytoplasm as conditions change. Cellular stresses such as starvation and invasion are internal insults that evoke changes in droplet metabolism and dynamics. This review will first outline lipid droplet assembly and then discuss how droplets respond to stress and in particular nutrient starvation. Finally, the role of droplets in viral and microbial invasion will be presented, where an unresolved issue is whether changes in droplet abundance promote the invader, defend the host, to try to do both. The challenges of stress and infection are often accompanied by changes in physical contacts between droplets and other organelles. How these changes may result in improving cellular physiology, an ongoing focus in the field, is discussed.

Citing Articles

TFE3 fusion proteins promote the progression of TFE3 rearranged renal cell carcinoma via enhancing chaperone-mediated lipophagy.

Ma W, Chen Y, Chen G, Yang L, Lu Y, Dong X Cell Commun Signal. 2025; 23(1):122.

PMID: 40050998 PMC: 11887198. DOI: 10.1186/s12964-025-02117-y.


FATP1-mediated fatty acid uptake in renal tubular cells as a countermeasure for hypothermia.

Horioka K, Tanaka H, Watanabe S, Yamada S, Takauji S, Hayakawa A J Mol Med (Berl). 2025; .

PMID: 40042587 DOI: 10.1007/s00109-025-02525-0.


Coffee Compounds Protection Against Lipotoxicity Is Associated with Lipid Droplet Formation and Antioxidant Response in Primary Rat Hepatocytes.

Arroyave-Ospina J, Martinez M, Buist-Homan M, Palasantzas V, Arrese M, Moshage H Antioxidants (Basel). 2025; 14(2).

PMID: 40002362 PMC: 11851918. DOI: 10.3390/antiox14020175.


New functions of oxylipins released by pyroptotic cells.

Xu H, Tan H, Wang H, Zheng X, Wu Y, He R Acta Pharm Sin B. 2025; 14(12):5509-5511.

PMID: 39807325 PMC: 11725132. DOI: 10.1016/j.apsb.2024.10.007.


Molecular probes for tracking lipid droplet membrane dynamics.

Kong L, Bai Q, Li C, Wang Q, Wang Y, Shao X Nat Commun. 2024; 15(1):9413.

PMID: 39482302 PMC: 11528070. DOI: 10.1038/s41467-024-53667-7.


References
1.
Luo M, Fadeev E, Groves J . Mycobactin-mediated iron acquisition within macrophages. Nat Chem Biol. 2006; 1(3):149-53. DOI: 10.1038/nchembio717. View

2.
Cartwright B, Goodman J . Seipin: from human disease to molecular mechanism. J Lipid Res. 2012; 53(6):1042-55. PMC: 3351812. DOI: 10.1194/jlr.R023754. View

3.
Nchoutmboube J, Viktorova E, Scott A, Ford L, Pei Z, Watkins P . Increased long chain acyl-Coa synthetase activity and fatty acid import is linked to membrane synthesis for development of picornavirus replication organelles. PLoS Pathog. 2013; 9(6):e1003401. PMC: 3675155. DOI: 10.1371/journal.ppat.1003401. View

4.
Listenberger L, Han X, Lewis S, Cases S, Farese Jr R, Ory D . Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A. 2003; 100(6):3077-82. PMC: 152249. DOI: 10.1073/pnas.0630588100. View

5.
Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P . Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol. 2008; 180(3):473-82. PMC: 2234226. DOI: 10.1083/jcb.200711136. View