» Articles » PMID: 29770897

Machine Learning: a Useful Radiological Adjunct in Determination of a Newly Diagnosed Glioma's Grade and IDH Status

Overview
Journal J Neurooncol
Publisher Springer
Date 2018 May 18
PMID 29770897
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction: Machine learning methods have been introduced as a computer aided diagnostic tool, with applications to glioma characterisation on MRI. Such an algorithmic approach may provide a useful adjunct for a rapid and accurate diagnosis of a glioma. The aim of this study is to devise a machine learning algorithm that may be used by radiologists in routine practice to aid diagnosis of both: WHO grade and IDH mutation status in de novo gliomas.

Methods: To evaluate the status quo, we interrogated the accuracy of neuroradiology reports in relation to WHO grade: grade II 96.49% (95% confidence intervals [CI] 0.88, 0.99); III 36.51% (95% CI 0.24, 0.50); IV 72.9% (95% CI 0.67, 0.78). We derived five MRI parameters from the same diagnostic brain scans, in under two minutes per case, and then supplied these data to a random forest algorithm.

Results: Machine learning resulted in a high level of accuracy in prediction of tumour grade: grade II/III; area under the receiver operating characteristic curve (AUC) = 98%, sensitivity = 0.82, specificity = 0.94; grade II/IV; AUC = 100%, sensitivity = 1.0, specificity = 1.0; grade III/IV; AUC = 97%, sensitivity = 0.83, specificity = 0.97. Furthermore, machine learning also facilitated the discrimination of IDH status: AUC of 88%, sensitivity = 0.81, specificity = 0.77.

Conclusions: These data demonstrate the ability of machine learning to accurately classify diffuse gliomas by both WHO grade and IDH status from routine MRI alone-without significant image processing, which may facilitate usage as a diagnostic adjunct in clinical practice.

Citing Articles

A subregion-based RadioFusionOmics model discriminates between grade 4 astrocytoma and glioblastoma on multisequence MRI.

Wei R, Lu S, Lai S, Liang F, Zhang W, Jiang X J Cancer Res Clin Oncol. 2024; 150(2):73.

PMID: 38305926 PMC: 10837235. DOI: 10.1007/s00432-023-05603-3.


Assessment of artificial intelligence (AI) reporting methodology in glioma MRI studies using the Checklist for AI in Medical Imaging (CLAIM).

Bhandari A, Scott L, Weilbach M, Marwah R, Lasocki A Neuroradiology. 2023; 65(5):907-913.

PMID: 36746792 PMC: 10105653. DOI: 10.1007/s00234-023-03126-9.


Multimodal MRI-Based Radiomic Nomogram for the Early Differentiation of Recurrence and Pseudoprogression of High-Grade Glioma.

Jing H, Yang F, Peng K, Qin D, He Y, Yang G Biomed Res Int. 2022; 2022:4667117.

PMID: 36246986 PMC: 9553483. DOI: 10.1155/2022/4667117.


Challenges and opportunities for advanced neuroimaging of glioblastoma.

Henssen D, Meijer F, Verburg F, Smits M Br J Radiol. 2022; 96(1141):20211232.

PMID: 36062962 PMC: 10997013. DOI: 10.1259/bjr.20211232.


Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis.

Bahar R, Merkaj S, Cassinelli Petersen G, Tillmanns N, Subramanian H, Brim W Front Oncol. 2022; 12:856231.

PMID: 35530302 PMC: 9076130. DOI: 10.3389/fonc.2022.856231.


References
1.
Louis D, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee W . The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131(6):803-20. DOI: 10.1007/s00401-016-1545-1. View

2.
Horska A, Barker P . Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am. 2010; 20(3):293-310. PMC: 2927327. DOI: 10.1016/j.nic.2010.04.003. View

3.
Waite S, Kolla S, Jeudy J, Legasto A, Macknik S, Martinez-Conde S . Tired in the Reading Room: The Influence of Fatigue in Radiology. J Am Coll Radiol. 2016; 14(2):191-197. DOI: 10.1016/j.jacr.2016.10.009. View

4.
Svolos P, Tsolaki E, Kapsalaki E, Theodorou K, Fountas K, Fezoulidis I . Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T MRI using pattern recognition techniques. Magn Reson Imaging. 2013; 31(9):1567-77. DOI: 10.1016/j.mri.2013.06.010. View

5.
Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, Burth S . Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features. Radiology. 2016; 281(3):907-918. DOI: 10.1148/radiol.2016161382. View