» Articles » PMID: 29756127

Image Segmentation and Modeling of the Pediatric Tricuspid Valve in Hypoplastic Left Heart Syndrome

Overview
Publisher Springer
Date 2018 May 15
PMID 29756127
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Hypoplastic left heart syndrome (HLHS) is a single-ventricle congenital heart disease that is fatal if left unpalliated. In HLHS patients, the tricuspid valve is the only functioning atrioventricular valve, and its competence is therefore critical. This work demonstrates the first automated strategy for segmentation, modeling, and morphometry of the tricuspid valve in transthoracic 3D echocardiographic (3DE) images of pediatric patients with HLHS. After initial landmark placement, the automated segmentation step uses multi-atlas label fusion and the modeling approach uses deformable modeling with medial axis representation to produce patient-specific models of the tricuspid valve that can be comprehensively and quantitatively assessed. In a group of 16 pediatric patients, valve segmentation and modeling attains an accuracy (mean boundary displacement) of 0.8 ± 0.2 mm relative to manual tracing and shows consistency in annular and leaflet measurements. In the future, such image-based tools have the potential to improve understanding and evaluation of tricuspid valve morphology in HLHS and guide strategies for patient care.

Citing Articles

Texas TriValve 1.0 : a reverse‑engineered, open model of the human tricuspid valve.

Mathur M, Meador W, Malinowski M, Jazwiec T, Timek T, Rausch M Eng Comput. 2023; 38(5):3835-3848.

PMID: 37139164 PMC: 10153581. DOI: 10.1007/s00366-022-01659-w.


Skeletal model-based analysis of the tricuspid valve in hypoplastic left heart syndrome.

Vicory J, Herz C, Han Y, Allemang D, Flynn M, Cianciulli A Stat Atlases Comput Models Heart. 2023; 13593:258-268.

PMID: 36848309 PMC: 9949511. DOI: 10.1007/978-3-031-23443-9_24.


SlicerHeart: An open-source computing platform for cardiac image analysis and modeling.

Lasso A, Herz C, Nam H, Cianciulli A, Pieper S, Drouin S Front Cardiovasc Med. 2022; 9:886549.

PMID: 36148054 PMC: 9485637. DOI: 10.3389/fcvm.2022.886549.


A pilot investigation of the tricuspid valve annulus in newborns with hypoplastic left heart syndrome.

Ross C, Trimble E, Johnson E, Baumwart R, Jolley M, Mir A JTCVS Open. 2022; 10:324-339.

PMID: 35937182 PMC: 9354836. DOI: 10.1016/j.xjon.2022.02.015.


Visualization and Quantification of the Unrepaired Complete Atrioventricular Canal Valve Using Open-Source Software.

Nam H, Herz C, Lasso A, Cianciulli A, Flynn M, Huang J J Am Soc Echocardiogr. 2022; 35(9):985-996.e11.

PMID: 35537615 PMC: 9452462. DOI: 10.1016/j.echo.2022.04.015.


References
1.
Pouch A, Tian S, Takebe M, Yuan J, Gorman Jr R, Cheung A . Medially constrained deformable modeling for segmentation of branching medial structures: Application to aortic valve segmentation and morphometry. Med Image Anal. 2015; 26(1):217-31. PMC: 4679439. DOI: 10.1016/j.media.2015.09.003. View

2.
Badano L, Agricola E, de Isla L, Gianfagna P, Zamorano J . Evaluation of the tricuspid valve morphology and function by transthoracic real-time three-dimensional echocardiography. Eur J Echocardiogr. 2009; 10(4):477-84. DOI: 10.1093/ejechocard/jep044. View

3.
Elmi M, Hickey E, Williams W, Van Arsdell G, Caldarone C, McCrindle B . Long-term tricuspid valve function after Norwood operation. J Thorac Cardiovasc Surg. 2011; 142(6):1341-7.e4. DOI: 10.1016/j.jtcvs.2010.11.065. View

4.
Bharucha T, Honjo O, Seller N, Atlin C, Redington A, Caldarone C . Mechanisms of tricuspid valve regurgitation in hypoplastic left heart syndrome: a case-matched echocardiographic-surgical comparison study. Eur Heart J Cardiovasc Imaging. 2012; 14(2):135-41. DOI: 10.1093/ehjci/jes123. View

5.
Yushkevich P, Zhang H, Gee J . Continuous medial representation for anatomical structures. IEEE Trans Med Imaging. 2006; 25(12):1547-64. DOI: 10.1109/tmi.2006.884634. View