» Articles » PMID: 29722797

Action Observation Areas Represent Intentions From Subtle Kinematic Features

Overview
Journal Cereb Cortex
Specialty Neurology
Date 2018 May 4
PMID 29722797
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Mirror neurons have been proposed to underlie humans' ability to understand others' actions and intentions. Despite 2 decades of research, however, the exact computational and neuronal mechanisms implied in this ability remain unclear. In the current study, we investigated whether, in the absence of contextual cues, regions considered to be part of the human mirror neuron system represent intention from movement kinematics. A total of 21 participants observed reach-to-grasp movements, performed with either the intention to drink or to pour while undergoing functional magnetic resonance imaging. Multivoxel pattern analysis revealed successful decoding of intentions from distributed patterns of activity in a network of structures comprising the inferior parietal lobule, the superior parietal lobule, the inferior frontal gyrus, and the middle frontal gyrus. Consistent with the proposal that parietal regions play a key role in intention understanding, classifier weights were higher in the inferior parietal region. These results provide the first demonstration that putative mirror neuron regions represent subtle differences in movement kinematics to read the intention of an observed motor act.

Citing Articles

Decoding affect in emotional body language: valence representation in the action observation network.

Keck J, Bachmann J, Zabicki A, Munzert J, Kruger B Soc Cogn Affect Neurosci. 2025; 20(1).

PMID: 39953789 PMC: 11879420. DOI: 10.1093/scan/nsaf021.


Motor styles in action: Developing a computational framework for operationalization of motor distances.

Manuello J, Maronati C, Rocca M, Guidotti R, Costa T, Cavallo A Behav Res Methods. 2024; 57(1):13.

PMID: 39663280 PMC: 11634918. DOI: 10.3758/s13428-024-02530-0.


Three-stage Dynamic Brain-cognitive Model of Understanding Action Intention Displayed by Human Body Movements.

Huang L, Du F, Huang W, Ren H, Qiu W, Zhang J Brain Topogr. 2024; 37(6):1055-1067.

PMID: 38874853 DOI: 10.1007/s10548-024-01061-3.


Temporal hierarchy of observed goal-directed actions.

Aberbach-Goodman S, Mukamel R Sci Rep. 2023; 13(1):19701.

PMID: 37952024 PMC: 10640622. DOI: 10.1038/s41598-023-46917-z.


Kinematic priming of action predictions.

Scaliti E, Pullar K, Borghini G, Cavallo A, Panzeri S, Becchio C Curr Biol. 2023; 33(13):2717-2727.e6.

PMID: 37339628 PMC: 10357321. DOI: 10.1016/j.cub.2023.05.055.


References
1.
Quadflieg S, Etzel J, Gazzola V, Keysers C, Schubert T, Waiter G . Puddles, parties, and professors: linking word categorization to neural patterns of visuospatial coding. J Cogn Neurosci. 2011; 23(10):2636-49. DOI: 10.1162/jocn.2011.21628. View

2.
Casile A, Dayan E, Caggiano V, Hendler T, Flash T, Giese M . Neuronal encoding of human kinematic invariants during action observation. Cereb Cortex. 2009; 20(7):1647-55. DOI: 10.1093/cercor/bhp229. View

3.
F de C Hamilton A, Grafton S . Action outcomes are represented in human inferior frontoparietal cortex. Cereb Cortex. 2007; 18(5):1160-8. DOI: 10.1093/cercor/bhm150. View

4.
Perry A, Stiso J, Chang E, Lin J, Parvizi J, Knight R . Mirroring in the Human Brain: Deciphering the Spatial-Temporal Patterns of the Human Mirror Neuron System. Cereb Cortex. 2017; 28(3):1039-1048. PMC: 6059139. DOI: 10.1093/cercor/bhx013. View

5.
Kilner J . More than one pathway to action understanding. Trends Cogn Sci. 2011; 15(8):352-7. PMC: 3389781. DOI: 10.1016/j.tics.2011.06.005. View