» Articles » PMID: 29717928

Impact of the Autonomic Nervous System on the Skeleton

Overview
Journal Physiol Rev
Specialty Physiology
Date 2018 May 3
PMID 29717928
Citations 89
Authors
Affiliations
Soon will be listed here.
Abstract

It is from the discovery of leptin and the central nervous system as a regulator of bone remodeling that the presence of autonomic nerves within the skeleton transitioned from a mere histological observation to the mechanism whereby neurons of the central nervous system communicate with cells of the bone microenvironment and regulate bone homeostasis. This shift in paradigm sparked new preclinical and clinical investigations aimed at defining the contribution of sympathetic, parasympathetic, and sensory nerves to the process of bone development, bone mass accrual, bone remodeling, and cancer metastasis. The aim of this article is to review the data that led to the current understanding of the interactions between the autonomic and skeletal systems and to present a critical appraisal of the literature, bringing forth a schema that can put into physiological and clinical context the main genetic and pharmacological observations pointing to the existence of an autonomic control of skeletal homeostasis. The different types of nerves found in the skeleton, their functional interactions with bone cells, their impact on bone development, bone mass accrual and remodeling, and the possible clinical or pathophysiological relevance of these findings are discussed.

Citing Articles

Spatial histomorphometry reveals that local peripheral nerves modulate but are not required for skeletal adaptation to applied load in mice.

Beeve A, Hassan M, Li A, Migotsky N, Silva M, Scheller E JBMR Plus. 2025; 9(3):ziaf006.

PMID: 40040837 PMC: 11878550. DOI: 10.1093/jbmrpl/ziaf006.


Divalent metal ions enhance bone regeneration through modulation of nervous systems and metabolic pathways.

Luo Y, Liu B, Qiu Y, Li L, Yang F, Zhang C Bioact Mater. 2025; 47:432-447.

PMID: 40034410 PMC: 11872643. DOI: 10.1016/j.bioactmat.2025.01.034.


Strategies for promoting neurovascularization in bone regeneration.

Li X, Zhao Y, Miao L, An Y, Wu F, Han J Mil Med Res. 2025; 12(1):9.

PMID: 40025573 PMC: 11874146. DOI: 10.1186/s40779-025-00596-1.


Semaphorin 3A on Osteoporosis: An Overreview of the Literature.

Zhang Y, Shi H, Dai X, Shen J, Yin J, Xu T Calcif Tissue Int. 2025; 116(1):43.

PMID: 39985619 DOI: 10.1007/s00223-025-01350-4.


Targeting skeletal interoception: a novel mechanistic insight into intervertebral disc degeneration and pain management.

Zhu H, Ren J, Wang X, Qin W, Xie Y J Orthop Surg Res. 2025; 20(1):159.

PMID: 39940003 PMC: 11823264. DOI: 10.1186/s13018-025-05577-7.


References
1.
Schweiger J, Schweiger U, Huppe M, Kahl K, Greggersen W, Fassbinder E . Bone density and depressive disorder: a meta-analysis. Brain Behav. 2016; 6(8):e00489. PMC: 4980464. DOI: 10.1002/brb3.489. View

2.
Sheu Y, Lanteigne A, Sturmer T, Pate V, Azrael D, Miller M . SSRI use and risk of fractures among perimenopausal women without mental disorders. Inj Prev. 2015; 21(6):397-403. DOI: 10.1136/injuryprev-2014-041483. View

3.
Agrawal Y, Carey J, Della Santina C, Schubert M, Minor L . Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001-2004. Arch Intern Med. 2009; 169(10):938-44. DOI: 10.1001/archinternmed.2009.66. View

4.
Armbrecht G, Belavy D, Backstrom M, Beller G, Alexandre C, Rizzoli R . Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high-resolution pQCT: WISE 2005. J Bone Miner Res. 2011; 26(10):2399-410. DOI: 10.1002/jbmr.482. View

5.
Martin C, Jimenez-Andrade J, Ghilardi J, Mantyh P . Organization of a unique net-like meshwork of CGRP+ sensory fibers in the mouse periosteum: implications for the generation and maintenance of bone fracture pain. Neurosci Lett. 2007; 427(3):148-52. PMC: 4444220. DOI: 10.1016/j.neulet.2007.08.055. View