» Articles » PMID: 29714357

Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation

Overview
Journal Brainlesion
Publisher Springer
Date 2018 May 2
PMID 29714357
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

We propose a new approach to Multiple Sclerosis lesion segmentation that utilizes synthesized images. A new method of image synthesis is considered: joint intensity fusion (JIF). JIF synthesizes an image from a library of deformably registered and intensity normalized atlases. Each location in the synthesized image is a weighted average of the registered atlases; atlas weights vary spatially. The weights are determined using the joint label fusion (JLF) framework. The primary methodological contribution is the application of JLF to MRI signal directly rather than labels. Synthesized images are then used as additional features in a lesion segmentation task using the OASIS classifier, a logistic regression model on intensities from multiple modalities. The addition of JIF synthesized images improved the Dice-Sorensen coefficient (relative to manually drawn gold standards) of lesion segmentations over the standard model segmentations by 0.0462 ± 0.0050 (mean ± standard deviation) at optimal threshold over all subjects and 10 separate training/testing folds.

Citing Articles

Deep network and multi-atlas segmentation fusion for delineation of thigh muscle groups in three-dimensional water-fat separated MRI.

Annasamudram N, Okorie A, Spencer R, Kalyani R, Yang Q, Landman B J Med Imaging (Bellingham). 2024; 11(5):054003.

PMID: 39234425 PMC: 11369361. DOI: 10.1117/1.JMI.11.5.054003.


Image harmonization improves consistency of intra-rater delineations of MS lesions in heterogeneous MRI.

Carass A, Greenman D, Dewey B, Calabresi P, Prince J, Pham D Neuroimage Rep. 2024; 4(1).

PMID: 38370461 PMC: 10871705. DOI: 10.1016/j.ynirp.2024.100195.


LIFE: A Generalizable Autodidactic Pipeline for 3D OCT-A Vessel Segmentation.

Hu D, Cui C, Li H, Larson K, Tao Y, Oguz I Med Image Comput Comput Assist Interv. 2021; 12901:514-524.

PMID: 34950935 PMC: 8692169. DOI: 10.1007/978-3-030-87193-2_49.


Self-fusion for OCT noise reduction.

Oguz I, Malone J, Atay Y, Tao Y Proc SPIE Int Soc Opt Eng. 2021; 11313.

PMID: 34873356 PMC: 8643350. DOI: 10.1117/12.2549472.


Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis.

Carass A, Roy S, Gherman A, Reinhold J, Jesson A, Arbel T Sci Rep. 2020; 10(1):8242.

PMID: 32427874 PMC: 7237671. DOI: 10.1038/s41598-020-64803-w.

References
1.
Cardoso M, Sudre C, Modat M, Ourselin S . Template-Based Multimodal Joint Generative Model of Brain Data. Inf Process Med Imaging. 2015; 24():17-29. DOI: 10.1007/978-3-319-19992-4_2. View

2.
Sweeney E, Shinohara R, Shiee N, Mateen F, Chudgar A, Cuzzocreo J . OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI. Neuroimage Clin. 2013; 2:402-13. PMC: 3777691. DOI: 10.1016/j.nicl.2013.03.002. View

3.
Sled J, Zijdenbos A, Evans A . A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998; 17(1):87-97. DOI: 10.1109/42.668698. View

4.
Suttner L, Mejia A, Dewey B, Sati P, Reich D, Shinohara R . Statistical estimation of white matter microstructure from conventional MRI. Neuroimage Clin. 2016; 12:615-623. PMC: 5048084. DOI: 10.1016/j.nicl.2016.09.010. View

5.
Garcia-Lorenzo D, Francis S, Narayanan S, Arnold D, Collins D . Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med Image Anal. 2012; 17(1):1-18. DOI: 10.1016/j.media.2012.09.004. View