» Articles » PMID: 29687256

Production of Optically Pure 2,3-butanediol from Miscanthus Floridulus Hydrolysate Using Engineered Bacillus Licheniformis Strains

Overview
Publisher Springer
Date 2018 Apr 25
PMID 29687256
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

2,3-Butanediol (2,3-BD) can be produced by fermentation of natural resources like Miscanthus. Bacillus licheniformis mutants, WX-02ΔbudC and WX-02ΔgldA, were elucidated for the potential to use Miscanthus as a cost-effective biomass to produce optically pure 2,3-BD. Both WX-02ΔbudC and WX-02ΔgldA could efficiently use xylose as well as mixed sugars of glucose and xylose to produce optically pure 2,3-BD. Batch fermentation of M. floridulus hydrolysate could produce 21.6 g/L D-2,3-BD and 23.9 g/L meso-2,3-BD in flask, and 13.8 g/L D-2,3-BD and 13.2 g/L meso-2,3-BD in bioreactor for WX-02ΔbudC and WX-02ΔgldA, respectively. Further fed-batch fermentation of hydrolysate in bioreactor showed both of two strains could produce optically pure 2,3-BD, with 32.2 g/L D-2,3-BD for WX-02ΔbudC and 48.5 g/L meso-2,3-BD for WX-02ΔgldA, respectively. Collectively, WX-02ΔbudC and WX-02ΔgldA can efficiently produce optically pure 2,3-BD with M. floridulus hydrolysate, and these two strains are candidates for industrial production of optical purity of 2,3-BD with M. floridulus hydrolysate.

Citing Articles

Advancing as a Superior Expression Platform through Promoter Engineering.

Xiao F, Zhang Y, Zhang L, Li S, Chen W, Shi G Microorganisms. 2024; 12(8).

PMID: 39203534 PMC: 11356801. DOI: 10.3390/microorganisms12081693.


: From Taxonomy to Biotechnological and Industrial Perspectives.

Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi S Microorganisms. 2022; 10(12).

PMID: 36557608 PMC: 9781867. DOI: 10.3390/microorganisms10122355.


C4 Bacterial Volatiles Improve Plant Health.

Dias B, Jung S, Velasco de Castro Oliveira J, Ryu C Pathogens. 2021; 10(6).

PMID: 34072921 PMC: 8227687. DOI: 10.3390/pathogens10060682.


The current strategies and parameters for the enhanced microbial production of 2,3-butanediol.

Hakizimana O, Matabaro E, Lee B Biotechnol Rep (Amst). 2019; 25:e00397.

PMID: 31853445 PMC: 6911977. DOI: 10.1016/j.btre.2019.e00397.

References
1.
Qi G, Kang Y, Li L, Xiao A, Zhang S, Wen Z . Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels. 2014; 7(1):16. PMC: 3909405. DOI: 10.1186/1754-6834-7-16. View

2.
Wang Q, Chen T, Zhao X, Chamu J . Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Biotechnol Bioeng. 2012; 109(7):1610-21. DOI: 10.1002/bit.24427. View

3.
Fu J, Huo G, Feng L, Mao Y, Wang Z, Ma H . Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnol Biofuels. 2016; 9:90. PMC: 4837526. DOI: 10.1186/s13068-016-0502-5. View

4.
Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K . Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng. 2014; 23:22-33. DOI: 10.1016/j.ymben.2014.02.004. View

5.
Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z . Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J Basic Microbiol. 2011; 51(6):650-8. DOI: 10.1002/jobm.201100033. View