» Articles » PMID: 26379775

Metabolic Engineering of Escherichia Coli for Production of (2S,3S)-butane-2,3-diol from Glucose

Overview
Publisher Biomed Central
Specialty Biotechnology
Date 2015 Sep 18
PMID 26379775
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Butane-2,3-diol (2,3-BD) is a fuel and platform biochemical with various industrial applications. 2,3-BD exists in three stereoisomeric forms: (2R,3R)-2,3-BD, meso-2,3-BD and (2S,3S)-2,3-BD. Microbial fermentative processes have been reported for (2R,3R)-2,3-BD and meso-2,3-BD production.

Results: The production of (2S,3S)-2,3-BD from glucose was acquired by whole cells of recombinant Escherichia coli coexpressing the α-acetolactate synthase and meso-butane-2,3-diol dehydrogenase of Enterobacter cloacae subsp. dissolvens strain SDM. An optimal biocatalyst for (2S,3S)-2,3-BD production, E. coli BL21 (pETDuet-PT7-budB-PT7-budC), was constructed and the bioconversion conditions were optimized. With the addition of 10 mM FeCl3 in the bioconversion system, (2S,3S)-2,3-BD at a concentration of 2.2 g/L was obtained with a stereoisomeric purity of 95.0 % using the metabolically engineered strain from glucose.

Conclusions: The engineered E. coli strain is the first one that can be used in the direct production of (2S,3S)-2,3-BD from glucose. The results demonstrated that the method developed here would be a promising process for efficient (2S,3S)-2,3-BD production.

Citing Articles

Mechanism of microbial production of acetoin and 2,3-butanediol optical isomers and substrate specificity of butanediol dehydrogenase.

Li Y, Zhao X, Yao M, Yang W, Han Y, Liu L Microb Cell Fact. 2023; 22(1):165.

PMID: 37644496 PMC: 10466699. DOI: 10.1186/s12934-023-02163-6.


Metabolic Engineering and Regulation of Diol Biosynthesis from Renewable Biomass in .

Wu T, Liu Y, Liu J, Chen Z, Huo Y Biomolecules. 2022; 12(5).

PMID: 35625642 PMC: 9138338. DOI: 10.3390/biom12050715.


Dehydrogenation Mechanism of Three Stereoisomers of Butane-2,3-Diol in KT2440.

Liu Y, Wang X, Ma L, Lu M, Zhang W, Lu C Front Bioeng Biotechnol. 2021; 9:728767.

PMID: 34513815 PMC: 8427195. DOI: 10.3389/fbioe.2021.728767.


Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli.

Boecker S, Harder B, Kutscha R, Pflugl S, Klamt S Microb Cell Fact. 2021; 20(1):63.

PMID: 33750397 PMC: 7941745. DOI: 10.1186/s12934-021-01554-x.


Zika Virus Infection Results in Biochemical Changes Associated With RNA Editing, Inflammatory and Antiviral Responses in .

Onyango M, Attardo G, Kelly E, Bialosuknia S, Stout J, Banker E Front Microbiol. 2020; 11:559035.

PMID: 33133033 PMC: 7561680. DOI: 10.3389/fmicb.2020.559035.


References
1.
Markwell M, Haas S, Bieber L, Tolbert N . A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978; 87(1):206-10. DOI: 10.1016/0003-2697(78)90586-9. View

2.
Dai J, Cheng J, Liang Y, Jiang T, Yuan Y . Regulation of extracellular oxidoreduction potential enhanced (R,R)-2,3-butanediol production by Paenibacillus polymyxa CJX518. Bioresour Technol. 2014; 167:433-40. DOI: 10.1016/j.biortech.2014.06.044. View

3.
Qi G, Kang Y, Li L, Xiao A, Zhang S, Wen Z . Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels. 2014; 7(1):16. PMC: 3909405. DOI: 10.1186/1754-6834-7-16. View

4.
Wang Q, Chen T, Zhao X, Chamu J . Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Biotechnol Bioeng. 2012; 109(7):1610-21. DOI: 10.1002/bit.24427. View

5.
Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K . Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng. 2014; 23:22-33. DOI: 10.1016/j.ymben.2014.02.004. View