Pharmacological Regulation of Outflow Resistance Distal to Schlemm's Canal
Overview
Physiology
Affiliations
The trabecular meshwork (TM) and Schlemm's canal generate the majority of outflow resistance; however, the distal regions of the conventional outflow pathway account for 25-50% of total resistance. Sections of distal vessels are surrounded by α-smooth muscle actin-containing cells, indicating that they may be vasoregulated. This study examined the effect of a potent vasodilator, nitric oxide (NO), and its physiological antagonist, endothelin-1 (ET-1), on the regulation of outflow resistance in the distal regions of the conventional outflow pathway. Using a physiological model of the conventional outflow pathway, human and porcine anterior segments were perfused in organ culture under constant flow conditions, while intrachamber pressure was continually monitored. For porcine anterior segments, a stable baseline outflow facility with TM intact was first achieved before anterior segments were removed and a trabeculotomy was performed. For human anterior segments, a trabeculotomy was immediately performed. In human anterior segments, 100 nM ET-1 significantly decreased distal outflow facility from 0.49 ± 0.26 to 0.31 ± 0.18 (mean ± SD) µl·min·mmHg, P < 0.01. Perfusion with 100 µM diethylenetriamine-NO in the presence of 1 nM ET-1 immediately reversed ET-1 effects, significantly increasing distal outflow facility to 0.54 ± 0.35 µl·min·mmHg, P = 0.01. Similar results were obtained in porcine anterior segment experiments. Therefore, data show a dynamic range of resistance generation by distal vessels in both the human and the porcine conventional outflow pathways. Interestingly, maximal contraction of vessels in the distal outflow tract of trabeculotomized eyes generated resistance very near physiological levels for both species having an intact TM.
Acott T, Fautsch M, Mao W, Ethier C, Huang A, Kelley M Invest Ophthalmol Vis Sci. 2024; 65(14):32.
PMID: 39693082 PMC: 11708870. DOI: 10.1167/iovs.65.14.32.
Human Anterior Segment Perfusion Organ Culture.
Chowdhury U, Fautsch M Methods Mol Biol. 2024; 2858:87-100.
PMID: 39433669 DOI: 10.1007/978-1-0716-4140-8_8.
Magnesium and Its Role in Primary Open Angle Glaucoma; A Novel Therapeutic?.
Elghobashy M, Lamont H, Morelli-Batters A, Masood I, Hill L Front Ophthalmol (Lausanne). 2024; 2:897128.
PMID: 38983515 PMC: 11182183. DOI: 10.3389/fopht.2022.897128.
The Factors Affecting the Stability of IOP Homeostasis.
Overby D, Ethier C, Miao C, Kelly R, Reina-Torres E, Stamer W Invest Ophthalmol Vis Sci. 2024; 65(6):4.
PMID: 38833261 PMC: 11157970. DOI: 10.1167/iovs.65.6.4.
Glucocorticoid-Induced Ocular Hypertension and Glaucoma.
Harvey D, Sugali C, Mao W Clin Ophthalmol. 2024; 18:481-505.
PMID: 38379915 PMC: 10878139. DOI: 10.2147/OPTH.S442749.