» Articles » PMID: 29569930

Double Barrel Nanopores As a New Tool for Controlling Single-Molecule Transport

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2018 Mar 24
PMID 29569930
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

The ability to control the motion of single biomolecules is key to improving a wide range of biophysical and diagnostic applications. Solid-state nanopores are a promising tool capable of solving this task. However, molecular control and the possibility of slow readouts of long polymer molecules are still limited due to fast analyte transport and low signal-to-noise ratios. Here, we report on a novel approach of actively controlling analyte transport by using a double-nanopore architecture where two nanopores are separated by only a ∼ 20 nm gap. The nanopores can be addressed individually, allowing for two unique modes of operation: (i) pore-to-pore transfer, which can be controlled at near 100% efficiency, and (ii) DNA molecules bridging between the two nanopores, which enables detection with an enhanced temporal resolution (e.g., an increase of more than 2 orders of magnitude in the dwell time) without compromising the signal quality. The simplicity of fabrication and operation of the double-barrel architecture opens a wide range of applications for high-resolution readout of biological molecules.

Citing Articles

Solid-State Nanopore Real-Time Assay for Monitoring Cas9 Endonuclease Reactivity.

Chau C, Weckman N, Thomson E, Actis P ACS Nano. 2025; 19(3):3839-3851.

PMID: 39814565 PMC: 11781028. DOI: 10.1021/acsnano.4c15173.


Nanopipettes as a Potential Diagnostic Tool for Selective Nanopore Detection of Biomolecules.

Kuanaeva R, Vaneev A, Gorelkin P, Erofeev A Biosensors (Basel). 2024; 14(12).

PMID: 39727892 PMC: 11674911. DOI: 10.3390/bios14120627.


Coupled nanopores for single-molecule detection.

Chou Y, Lin C, Castan A, Chen J, Keneipp R, Yasini P Nat Nanotechnol. 2024; 19(11):1686-1692.

PMID: 39143316 DOI: 10.1038/s41565-024-01746-7.


Electrokinetic Nanorod Translocation through a Dual-Nanopipette.

Zhang X, Bai Y, Liu S, Yang J, Hu N ACS Omega. 2024; 9(22):24050-24059.

PMID: 38854563 PMC: 11154894. DOI: 10.1021/acsomega.4c02630.


Interfacing Aptamer-Modified Nanopipettes with Neuronal Media and Brain Tissue.

Stuber A, Cavaccini A, Manole A, Burdina A, Massoud Y, Patriarchi T ACS Meas Sci Au. 2024; 4(1):92-103.

PMID: 38404490 PMC: 10885324. DOI: 10.1021/acsmeasuresciau.3c00047.


References
1.
Cadinu P, Paulose Nadappuram B, Lee D, Sze J, Campolo G, Zhang Y . Single Molecule Trapping and Sensing Using Dual Nanopores Separated by a Zeptoliter Nanobridge. Nano Lett. 2017; 17(10):6376-6384. PMC: 5662926. DOI: 10.1021/acs.nanolett.7b03196. View

2.
Wanunu M, Sutin J, McNally B, Chow A, Meller A . DNA translocation governed by interactions with solid-state nanopores. Biophys J. 2008; 95(10):4716-25. PMC: 2576395. DOI: 10.1529/biophysj.108.140475. View

3.
Bell N, Keyser U . Specific protein detection using designed DNA carriers and nanopores. J Am Chem Soc. 2015; 137(5):2035-41. PMC: 4353036. DOI: 10.1021/ja512521w. View

4.
Lin X, Ivanov A, Edel J . Selective single molecule nanopore sensing of proteins using DNA aptamer-functionalised gold nanoparticles. Chem Sci. 2017; 8(5):3905-3912. PMC: 5465561. DOI: 10.1039/c7sc00415j. View

5.
Lu B, Hoogerheide D, Zhao Q, Zhang H, Tang Z, Yu D . Pressure-controlled motion of single polymers through solid-state nanopores. Nano Lett. 2013; 13(7):3048-52. PMC: 3864131. DOI: 10.1021/nl402052v. View