» Articles » PMID: 29563542

Probiotic Escherichia Coli Inhibits Biofilm Formation of Pathogenic E. Coli Via Extracellular Activity of DegP

Overview
Journal Sci Rep
Specialty Science
Date 2018 Mar 23
PMID 29563542
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

Many chronic infections involve bacterial biofilms, which are difficult to eliminate using conventional antibiotic treatments. Biofilm formation is a result of dynamic intra- or inter-species interactions. However, the nature of molecular interactions between bacteria in multi-species biofilms are not well understood compared to those in single-species biofilms. This study investigated the ability of probiotic Escherichia coli Nissle 1917 (EcN) to outcompete the biofilm formation of pathogens including enterohemorrhagic E. coli (EHEC), Pseudomonas aeruginosa, Staphylococcus aureus, and S. epidermidis. When dual-species biofilms were formed, EcN inhibited the EHEC biofilm population by 14-fold compared to EHEC single-species biofilms. This figure was 1,100-fold for S. aureus and 8,300-fold for S. epidermidis; however, EcN did not inhibit P. aeruginosa biofilms. In contrast, commensal E. coli did not exhibit any inhibitory effect toward other bacterial biofilms. We identified that EcN secretes DegP, a bifunctional (protease and chaperone) periplasmic protein, outside the cells and controls other biofilms. Although three E. coli strains tested in this study expressed degP, only the EcN strain secreted DegP outside the cells. The deletion of degP disabled the activity of EcN in inhibiting EHEC biofilms, and purified DegP directly repressed EHEC biofilm formation. Hence, probiotic E. coli outcompetes pathogenic biofilms via extracellular DegP activity during dual-species biofilm formation.

Citing Articles

Secreted autotransporter toxin produced by probiotic Nissle 1917 enhances neurodegeneration in .

Redweik G, Xue D MicroPubl Biol. 2025; 2025.

PMID: 39950089 PMC: 11822469. DOI: 10.17912/micropub.biology.001366.


Combating antibiotic resistance in a one health context: a plethora of frontiers.

Ajose D, Adekanmbi A, Kamaruzzaman N, Ateba C, Saeed S One Health Outlook. 2024; 6(1):19.

PMID: 39487542 PMC: 11531134. DOI: 10.1186/s42522-024-00115-7.


A new standardization for the use of chicken embryo: selection of target from the phage display library and infection.

de Souza J, Sommerfeld S, Almeida-Souza H, Vaz E, Bastos L, Santos F Appl Microbiol Biotechnol. 2024; 108(1):412.

PMID: 38985354 PMC: 11236870. DOI: 10.1007/s00253-024-13227-x.


Klebsiella oxytoca inhibits Salmonella infection through multiple microbiota-context-dependent mechanisms.

Osbelt L, Almasi E, Wende M, Kienesberger S, Voltz A, Lesker T Nat Microbiol. 2024; 9(7):1792-1811.

PMID: 38862602 PMC: 11222139. DOI: 10.1038/s41564-024-01710-0.


Nutrition of within the intestinal microbiome.

Doranga S, Krogfelt K, Cohen P, Conway T EcoSal Plus. 2024; 12(1):eesp00062023.

PMID: 38417452 PMC: 11636361. DOI: 10.1128/ecosalplus.esp-0006-2023.


References
1.
Kim S, Sauer R . Distinct regulatory mechanisms balance DegP proteolysis to maintain cellular fitness during heat stress. Genes Dev. 2014; 28(8):902-11. PMC: 4003281. DOI: 10.1101/gad.238394.114. View

2.
Khare A, Tavazoie S . Multifactorial Competition and Resistance in a Two-Species Bacterial System. PLoS Genet. 2015; 11(12):e1005715. PMC: 4672897. DOI: 10.1371/journal.pgen.1005715. View

3.
Schultz M . Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflamm Bowel Dis. 2008; 14(7):1012-8. DOI: 10.1002/ibd.20377. View

4.
Datsenko K, Wanner B . One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000; 97(12):6640-5. PMC: 18686. DOI: 10.1073/pnas.120163297. View

5.
Mikkelsen L, Sarrocco S, Lubeck M, Jensen D . Expression of the red fluorescent protein DsRed-Express in filamentous ascomycete fungi. FEMS Microbiol Lett. 2003; 223(1):135-9. DOI: 10.1016/S0378-1097(03)00355-0. View