6.
Gibbons S, Gurry T, Lampe J, Chakrabarti A, Dam V, Everard A
. Perspective: Leveraging the Gut Microbiota to Predict Personalized Responses to Dietary, Prebiotic, and Probiotic Interventions. Adv Nutr. 2022; 13(5):1450-1461.
PMC: 9526856.
DOI: 10.1093/advances/nmac075.
View
7.
Ramadan Q, Jing L
. Characterization of tight junction disruption and immune response modulation in a miniaturized Caco-2/U937 coculture-based in vitro model of the human intestinal barrier. Biomed Microdevices. 2016; 18(1):11.
DOI: 10.1007/s10544-016-0035-5.
View
8.
El Hage R, El Hage J, Snini S, Ammoun I, Touma J, Rachid R
. The Detection of Potential Native Probiotics spp. against Enteritidis, Infantis and Kentucky ST198 of Lebanese Chicken Origin. Antibiotics (Basel). 2022; 11(9).
PMC: 9495222.
DOI: 10.3390/antibiotics11091147.
View
9.
Gutierrez N, Garrido D
. Species Deletions from Microbiome Consortia Reveal Key Metabolic Interactions between Gut Microbes. mSystems. 2019; 4(4).
PMC: 6635622.
DOI: 10.1128/mSystems.00185-19.
View
10.
Shin W, Kim H
. Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip. Proc Natl Acad Sci U S A. 2018; 115(45):E10539-E10547.
PMC: 6233106.
DOI: 10.1073/pnas.1810819115.
View
11.
Chiu L, Bazin T, Truchetet M, Schaeverbeke T, Delhaes L, Pradeu T
. Protective Microbiota: From Localized to Long-Reaching Co-Immunity. Front Immunol. 2017; 8:1678.
PMC: 5725472.
DOI: 10.3389/fimmu.2017.01678.
View
12.
Petruschke H, Schori C, Canzler S, Riesbeck S, Poehlein A, Daniel R
. Discovery of novel community-relevant small proteins in a simplified human intestinal microbiome. Microbiome. 2021; 9(1):55.
PMC: 7903761.
DOI: 10.1186/s40168-020-00981-z.
View
13.
Johnson A, Vangay P, Al-Ghalith G, Hillmann B, Ward T, Shields-Cutler R
. Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. Cell Host Microbe. 2019; 25(6):789-802.e5.
DOI: 10.1016/j.chom.2019.05.005.
View
14.
Magnusdottir S, Heinken A, Kutt L, Ravcheev D, Bauer E, Noronha A
. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol. 2016; 35(1):81-89.
DOI: 10.1038/nbt.3703.
View
15.
Piazentin A, Mendonca C, Vallejo M, Mussatto S, Pinheiro de Souza Oliveira R
. Bacteriocin-like inhibitory substances production by Enterococcus faecium 135 in co-culture with Ligilactobacillus salivarius and Limosilactobacillus reuteri. Braz J Microbiol. 2022; 53(1):131-141.
PMC: 8882487.
DOI: 10.1007/s42770-021-00661-6.
View
16.
Mary P, Kapoor M
. Co-culture fermentations suggest cross-feeding among Bacteroides ovatus DSMZ 1896, Lactiplantibacillus plantarum WCFS1 and Bifidobacterium adolescentis DSMZ 20083 for utilizing dietary galactomannans. Food Res Int. 2022; 162(Pt A):111942.
DOI: 10.1016/j.foodres.2022.111942.
View
17.
Shetty S, Kuipers B, Atashgahi S, Aalvink S, Smidt H, de Vos W
. Inter-species Metabolic Interactions in an In-vitro Minimal Human Gut Microbiome of Core Bacteria. NPJ Biofilms Microbiomes. 2022; 8(1):21.
PMC: 8993927.
DOI: 10.1038/s41522-022-00275-2.
View
18.
Kern L, Abdeen S, Kolodziejczyk A, Elinav E
. Commensal inter-bacterial interactions shaping the microbiota. Curr Opin Microbiol. 2021; 63:158-171.
DOI: 10.1016/j.mib.2021.07.011.
View
19.
Kim C
. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol Immunol. 2021; 18(5):1161-1171.
PMC: 8093302.
DOI: 10.1038/s41423-020-00625-0.
View
20.
Mee M, Collins J, Church G, Wang H
. Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci U S A. 2014; 111(20):E2149-56.
PMC: 4034247.
DOI: 10.1073/pnas.1405641111.
View