» Articles » PMID: 29551572

Flying Under the Radar: Histoplasma Capsulatum Avoidance of Innate Immune Recognition

Overview
Date 2018 Mar 20
PMID 29551572
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

The dimorphic fungal pathogen Histoplasma capsulatum takes advantage of the innate immune system, utilizing host macrophages as a proliferative niche while largely avoiding stimulation of signaling host receptors. As a result, innate immune cells are unable to control H. capsulatum on their own. Not all host phagocytes respond to H. capsulatum in the same way, with neutrophils and dendritic cells playing important roles in impeding fungal growth and initiating a protective T1 response, respectively. Dendritic cells prime T-cell differentiation after internalization of yeasts via VLA-5 receptors and subsequent degradation of the yeasts. Dendritic cell-expressed TLR7 and TLR9 promote a type I interferon response for T1 polarization. In contrast to dendritic cells, macrophages provide a hospitable intracellular environment. H. capsulatum yeasts enter macrophages via binding to phagocytic receptors. Simultaneously, α-glucan masks immunostimulatory cell wall β-glucans and a secreted endoglucanase removes exposed β-glucans to minimize recognition of yeasts by Dectin-1. This review highlights how phagocytes interact with H. capsulatum yeasts and the mechanisms H. capsulatum uses to limit the innate immune response.

Citing Articles

Microbial adaptive pathogenicity strategies to the host inflammatory environment.

Hitzler S, Fernandez-Fernandez C, Fernandez C, Montano D, Dietschmann A, Gresnigt M FEMS Microbiol Rev. 2024; 49.

PMID: 39732621 PMC: 11737513. DOI: 10.1093/femsre/fuae032.


Coccidioidomycosis and Histoplasmosis in Immunocompetent Individuals: A Comprehensive Review of Clinical Features, Diagnosis, and Management.

Babariya H, Gaidhane S, Acharya S, Kumar S Cureus. 2024; 16(9):e68375.

PMID: 39355457 PMC: 11443987. DOI: 10.7759/cureus.68375.


Genotypic diversity, virulence, and molecular genetic tools in .

Sepulveda V, Goldman W, Matute D Microbiol Mol Biol Rev. 2024; 88(2):e0007623.

PMID: 38819148 PMC: 11332355. DOI: 10.1128/mmbr.00076-23.


Design of a Multi-Epitope Vaccine against through Immunoinformatics Approaches.

Marques P, Tiwari S, Felice A, Jaiswal A, Aburjaile F, Azevedo V J Fungi (Basel). 2024; 10(1).

PMID: 38248954 PMC: 10817582. DOI: 10.3390/jof10010043.


Insights on Covid-19 with superimposed pulmonary histoplasmosis: The possible nexus.

Almutawif Y, Al-Kuraishy H, Al-Gareeb A, Alexiou A, Papadakis M, Eid H Immun Inflamm Dis. 2023; 11(9):e989.

PMID: 37773721 PMC: 10540147. DOI: 10.1002/iid3.989.


References
1.
Garfoot A, Dearing K, VanSchoiack A, Wysocki V, Rappleye C . Eng1 and Exg8 Are the Major β-Glucanases Secreted by the Fungal Pathogen . J Biol Chem. 2017; 292(12):4801-4810. PMC: 5377796. DOI: 10.1074/jbc.M116.762104. View

2.
Nguyen V, Sil A . Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc Natl Acad Sci U S A. 2008; 105(12):4880-5. PMC: 2290814. DOI: 10.1073/pnas.0710448105. View

3.
Aravalli R, Hu S, Woods J, Lokensgard J . Histoplasma capsulatum yeast phase-specific protein Yps3p induces Toll-like receptor 2 signaling. J Neuroinflammation. 2008; 5:30. PMC: 2474602. DOI: 10.1186/1742-2094-5-30. View

4.
Kozel T, Mastroianni R . Inhibition of phagocytosis by cryptococcal polysaccharide: dissociation of the attachment and ingestion phases of phagocytosis. Infect Immun. 1976; 14(1):62-7. PMC: 420844. DOI: 10.1128/iai.14.1.62-67.1976. View

5.
Domer J . Monosaccharide and chitin content of cell walls of Histoplasma capsulatum and Blastomyces dermatitidis. J Bacteriol. 1971; 107(3):870-7. PMC: 247013. DOI: 10.1128/jb.107.3.870-877.1971. View