» Articles » PMID: 29548184

Defect-facilitated Buckling in Supercoiled Double-helix DNA

Overview
Journal Phys Rev E
Specialty Biophysics
Date 2018 Mar 18
PMID 29548184
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

We present a statistical-mechanical model for stretched twisted double-helix DNA, where thermal fluctuations are treated explicitly from a Hamiltonian without using any scaling hypotheses. Our model applied to defect-free supercoiled DNA describes the coexistence of multiple plectoneme domains in long DNA molecules at physiological salt concentrations (≈0.1M Na^{+}) and stretching forces (≈1pN). We find a higher (lower) number of domains at lower (higher) ionic strengths and stretching forces, in accord with experimental observations. We use our model to study the effect of an immobile point defect on the DNA contour that allows a localized kink. The degree of the kink is controlled by the defect size, such that a larger defect further reduces the bending energy of the defect-facilitated kinked end loop. We find that a defect can spatially pin a plectoneme domain via nucleation of a kinked end loop, in accord with experiments and simulations. Our model explains previously reported magnetic tweezer experiments [A. Dittmore et al., Phys. Rev. Lett. 119, 147801 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.147801] showing two buckling signatures: buckling and "rebuckling" in supercoiled DNA with a base-unpaired region. Comparing with experiments, we find that under 1 pN force, a kinked end loop nucleated at a base-mismatched site reduces the bending energy by ≈0.7 k_{B}T per unpaired base. Our model predicts the coexistence of three states at the buckling and rebuckling transitions, which warrants new experiments.

Citing Articles

Nucleosomes play a dual role in regulating transcription dynamics.

Brahmachari S, Tripathi S, Onuchic J, Levine H Proc Natl Acad Sci U S A. 2024; 121(28):e2319772121.

PMID: 38968124 PMC: 11252751. DOI: 10.1073/pnas.2319772121.


Loops are geometric catalysts for DNA integration.

Battaglia C, Michieletto D Nucleic Acids Res. 2024; 52(14):8184-8192.

PMID: 38864388 PMC: 11317143. DOI: 10.1093/nar/gkae484.


Single-molecule visualization of twin-supercoiled domains generated during transcription.

Janissen R, Barth R, Polinder M, van der Torre J, Dekker C Nucleic Acids Res. 2023; 52(4):1677-1687.

PMID: 38084930 PMC: 10899792. DOI: 10.1093/nar/gkad1181.


DNA fluctuations reveal the size and dynamics of topological domains.

Vanderlinden W, Skoruppa E, Kolbeck P, Carlon E, Lipfert J PNAS Nexus. 2023; 1(5):pgac268.

PMID: 36712371 PMC: 9802373. DOI: 10.1093/pnasnexus/pgac268.


The interplay of supercoiling and thymine dimers in DNA.

Lim W, Randisi F, Doye J, Louis A Nucleic Acids Res. 2022; 50(5):2480-2492.

PMID: 35188542 PMC: 8934635. DOI: 10.1093/nar/gkac082.


References
1.
Moroz J, Nelson P . Torsional directed walks, entropic elasticity, and DNA twist stiffness. Proc Natl Acad Sci U S A. 1998; 94(26):14418-22. PMC: 25005. DOI: 10.1073/pnas.94.26.14418. View

2.
Brutzer H, Luzzietti N, Klaue D, Seidel R . Energetics at the DNA supercoiling transition. Biophys J. 2010; 98(7):1267-76. PMC: 2849096. DOI: 10.1016/j.bpj.2009.12.4292. View

3.
Charvin G, Vologodskii A, Bensimon D, Croquette V . Braiding DNA: experiments, simulations, and models. Biophys J. 2005; 88(6):4124-36. PMC: 1305643. DOI: 10.1529/biophysj.104.056945. View

4.
Ganji M, Kim S, van der Torre J, Abbondanzieri E, Dekker C . Intercalation-Based Single-Molecule Fluorescence Assay To Study DNA Supercoil Dynamics. Nano Lett. 2016; 16(7):4699-707. DOI: 10.1021/acs.nanolett.6b02213. View

5.
Kriegel F, Ermann N, Forbes R, Dulin D, Dekker N, Lipfert J . Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers. Nucleic Acids Res. 2017; 45(10):5920-5929. PMC: 5449586. DOI: 10.1093/nar/gkx280. View