» Articles » PMID: 28460037

Probing the Salt Dependence of the Torsional Stiffness of DNA by Multiplexed Magnetic Torque Tweezers

Overview
Specialty Biochemistry
Date 2017 May 2
PMID 28460037
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

The mechanical properties of DNA fundamentally constrain and enable the storage and transmission of genetic information and its use in DNA nanotechnology. Many properties of DNA depend on the ionic environment due to its highly charged backbone. In particular, both theoretical analyses and direct single-molecule experiments have shown its bending stiffness to depend on salt concentration. In contrast, the salt-dependence of the twist stiffness of DNA is much less explored. Here, we employ optimized multiplexed magnetic torque tweezers to study the torsional stiffness of DNA under varying salt conditions as a function of stretching force. At low forces (<3 pN), the effective torsional stiffness is ∼10% smaller for high salt conditions (500 mM NaCl or 10 mM MgCl2) compared to lower salt concentrations (20 mM NaCl and 100 mM NaCl). These differences, however, can be accounted for by taking into account the known salt dependence of the bending stiffness. In addition, the measured high-force (6.5 pN) torsional stiffness values of C = 103 ± 4 nm are identical, within experimental errors, for all tested salt concentration, suggesting that the intrinsic torsional stiffness of DNA does not depend on salt.

Citing Articles

Accurate drift-invariant single-molecule force calibration using the Hadamard variance.

Pritzl S, Ulugol A, Korosy C, Filion L, Lipfert J Biophys J. 2024; 123(22):3964-3976.

PMID: 39473184 PMC: 11617635. DOI: 10.1016/j.bpj.2024.10.008.


Correlating fluorescence microscopy, optical and magnetic tweezers to study single chiral biopolymers such as DNA.

Shepherd J, Guilbaud S, Zhou Z, Howard J, Burman M, Schaefer C Nat Commun. 2024; 15(1):2748.

PMID: 38553446 PMC: 10980717. DOI: 10.1038/s41467-024-47126-6.


Systematic Comparison of Atomistic Force Fields for the Mechanical Properties of Double-Stranded DNA.

Roldan-Pinero C, Luengo-Marquez J, Assenza S, Perez R J Chem Theory Comput. 2024; 20(5):2261-2272.

PMID: 38411091 PMC: 10938644. DOI: 10.1021/acs.jctc.3c01089.


Supercoiling-dependent DNA binding: quantitative modeling and applications to bulk and single-molecule experiments.

Kolbeck P, Tisma M, Analikwu B, Vanderlinden W, Dekker C, Lipfert J Nucleic Acids Res. 2023; 52(1):59-72.

PMID: 38000393 PMC: 10783501. DOI: 10.1093/nar/gkad1055.


The energy landscape for R-loop formation by the CRISPR-Cas Cascade complex.

Kauert D, Madariaga-Marcos J, Rutkauskas M, Wulfken A, Songailiene I, Sinkunas T Nat Struct Mol Biol. 2023; 30(7):1040-1047.

PMID: 37415009 DOI: 10.1038/s41594-023-01019-2.


References
1.
Moroz J, Nelson P . Torsional directed walks, entropic elasticity, and DNA twist stiffness. Proc Natl Acad Sci U S A. 1998; 94(26):14418-22. PMC: 25005. DOI: 10.1073/pnas.94.26.14418. View

2.
Oberstrass F, Fernandes L, Bryant Z . Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA. Proc Natl Acad Sci U S A. 2012; 109(16):6106-11. PMC: 3341030. DOI: 10.1073/pnas.1113532109. View

3.
Tempestini A, Cassina V, Brogioli D, Ziano R, Erba S, Giovannoni R . Magnetic tweezers measurements of the nanomechanical stability of DNA against denaturation at various conditions of pH and ionic strength. Nucleic Acids Res. 2012; 41(3):2009-19. PMC: 3561983. DOI: 10.1093/nar/gks1206. View

4.
Brutzer H, Luzzietti N, Klaue D, Seidel R . Energetics at the DNA supercoiling transition. Biophys J. 2010; 98(7):1267-76. PMC: 2849096. DOI: 10.1016/j.bpj.2009.12.4292. View

5.
De Vlaminck I, Henighan T, van Loenhout M, Pfeiffer I, Huijts J, Kerssemakers J . Highly parallel magnetic tweezers by targeted DNA tethering. Nano Lett. 2011; 11(12):5489-93. DOI: 10.1021/nl203299e. View