» Articles » PMID: 29514260

In Cell Mutational Interference Mapping Experiment (in Cell MIME) Identifies the 5' Polyadenylation Signal As a Dual Regulator of HIV-1 Genomic RNA Production and Packaging

Abstract

Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5' region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5' PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production.

Citing Articles

MMTV RNA packaging requires an extended long-range interaction for productive Gag binding to packaging signals.

Prabhu S, Pillai V, Ali L, Vivet-Boudou V, Chameettachal A, Bernacchi S PLoS Biol. 2024; 22(10):e3002827.

PMID: 39361708 PMC: 11449360. DOI: 10.1371/journal.pbio.3002827.


Role of RNA structural plasticity in modulating HIV-1 genome packaging and translation.

Yasin S, Lesko S, Kharytonchyk S, Brown J, Chaudry I, Geleta S Proc Natl Acad Sci U S A. 2024; 121(33):e2407400121.

PMID: 39110735 PMC: 11331132. DOI: 10.1073/pnas.2407400121.


Expression, purification, and functional characterization of soluble recombinant full-length simian immunodeficiency virus (SIV) Pr55.

Pillai V, Ali L, Prabhu S, Krishnan A, Tariq S, Mustafa F Heliyon. 2023; 9(1):e12892.

PMID: 36685375 PMC: 9853374. DOI: 10.1016/j.heliyon.2023.e12892.


Metatranscriptomics Analysis Reveals Diverse Viral RNA in Cutaneous Papillomatous Lesions of Cattle.

Fernandes A, Barros G, Batista M Evol Bioinform Online. 2022; 18:11769343221083960.

PMID: 35633934 PMC: 9133864. DOI: 10.1177/11769343221083960.


Short- and long-range interactions in the HIV-1 5' UTR regulate genome dimerization and packaging.

Ye L, Gribling-Burrer A, Bohn P, Kibe A, Bortlein C, Ambi U Nat Struct Mol Biol. 2022; 29(4):306-319.

PMID: 35347312 PMC: 9010304. DOI: 10.1038/s41594-022-00746-2.


References
1.
Berkhout B, Silverman R, Jeang K . Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell. 1989; 59(2):273-82. DOI: 10.1016/0092-8674(89)90289-4. View

2.
Eckwahl M, Arnion H, Kharytonchyk S, Zang T, Bieniasz P, Telesnitsky A . Analysis of the human immunodeficiency virus-1 RNA packageome. RNA. 2016; 22(8):1228-38. PMC: 4931115. DOI: 10.1261/rna.057299.116. View

3.
Engeland C, Brown N, Borner K, Schumann M, Krause E, Kaderali L . Proteome analysis of the HIV-1 Gag interactome. Virology. 2014; 460-461:194-206. DOI: 10.1016/j.virol.2014.04.038. View

4.
Ashe M, Furger A, Proudfoot N . Stem-loop 1 of the U1 snRNP plays a critical role in the suppression of HIV-1 polyadenylation. RNA. 2000; 6(2):170-7. PMC: 1369903. DOI: 10.1017/s1355838200991957. View

5.
Paillart J, Dettenhofer M, Yu X, Ehresmann C, Ehresmann B, Marquet R . First snapshots of the HIV-1 RNA structure in infected cells and in virions. J Biol Chem. 2004; 279(46):48397-403. DOI: 10.1074/jbc.M408294200. View