» Articles » PMID: 29513714

Identification of Blood Biomarkers in Glioblastoma by SWATH Mass Spectrometry and Quantitative Targeted Absolute Proteomics

Overview
Journal PLoS One
Date 2018 Mar 8
PMID 29513714
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

Molecular biomarkers in blood are needed to aid the early diagnosis and clinical assessment of glioblastoma (GBM). Here, in order to identify biomarker candidates in plasma of GBM patients, we performed quantitative comparisons of the plasma proteomes of GBM patients (n = 14) and healthy controls (n = 15) using SWATH mass spectrometry analysis. The results were validated by means of quantitative targeted absolute proteomics analysis. As a result, we identified eight biomarker candidates for GBM (leucine-rich alpha-2-glycoprotein (LRG1), complement component C9 (C9), C-reactive protein (CRP), alpha-1-antichymotrypsin (SERPINA3), apolipoprotein B-100 (APOB), gelsolin (GSN), Ig alpha-1 chain C region (IGHA1), and apolipoprotein A-IV (APOA4)). Among them, LRG1, C9, CRP, GSN, IGHA1, and APOA4 gave values of the area under the receiver operating characteristics curve of greater than 0.80. To investigate the relationships between the biomarker candidates and GBM biology, we examined correlations between plasma concentrations of biomarker candidates and clinical presentation (tumor size, progression-free survival time, or overall survival time) in GBM patients. The plasma concentrations of LRG1, CRP, and C9 showed significant positive correlations with tumor size (R2 = 0.534, 0.495, and 0.452, respectively).

Citing Articles

Cross-Sectional and Longitudinal Associations of Serum LRG1 with Severity and Prognosis Among Adult Community-Acquired Pneumonia Patients.

Wang Y, Jiang Y, Xie M, Qi B, Pu K, Du W J Inflamm Res. 2024; 17:7951-7962.

PMID: 39502939 PMC: 11537034. DOI: 10.2147/JIR.S485932.


Proteomics Studies on Extracellular Vesicles Derived from Glioblastoma: Where Do We Stand?.

Giuliani P, De Simone C, Febo G, Bellasame A, Tupone N, Di Virglio V Int J Mol Sci. 2024; 25(18).

PMID: 39337267 PMC: 11431518. DOI: 10.3390/ijms25189778.


Machine learning-based analysis identifies and validates serum exosomal proteomic signatures for the diagnosis of colorectal cancer.

Yin H, Xie J, Xing S, Lu X, Yu Y, Ren Y Cell Rep Med. 2024; 5(8):101689.

PMID: 39168094 PMC: 11384723. DOI: 10.1016/j.xcrm.2024.101689.


A Synopsis of Biomarkers in Glioblastoma: Past and Present.

Tataranu L, Turliuc S, Rizea R, Dricu A, Alexandru O, Staicu G Curr Issues Mol Biol. 2024; 46(7):6903-6939.

PMID: 39057054 PMC: 11275428. DOI: 10.3390/cimb46070412.


Proteomics of tumor and serum samples from isocitrate dehydrogenase-wildtype glioblastoma patients: is the detoxification of reactive oxygen species associated with shorter survival?.

Clavreul A, Guette C, Lasla H, Rousseau A, Blanchet O, Henry C Mol Oncol. 2024; 18(11):2783-2800.

PMID: 38803161 PMC: 11547244. DOI: 10.1002/1878-0261.13668.


References
1.
Guergova-Kuras M, Kurucz I, Hempel W, Tardieu N, Kadas J, Malderez-Bloes C . Discovery of lung cancer biomarkers by profiling the plasma proteome with monoclonal antibody libraries. Mol Cell Proteomics. 2011; 10(12):M111.010298. PMC: 3237079. DOI: 10.1074/mcp.M111.010298. View

2.
Gautam P, Nair S, Gupta M, Sharma R, Polisetty R, Uppin M . Proteins with altered levels in plasma from glioblastoma patients as revealed by iTRAQ-based quantitative proteomic analysis. PLoS One. 2012; 7(9):e46153. PMC: 3461020. DOI: 10.1371/journal.pone.0046153. View

3.
Hormigo A, Gu B, Karimi S, Riedel E, Panageas K, Edgar M . YKL-40 and matrix metalloproteinase-9 as potential serum biomarkers for patients with high-grade gliomas. Clin Cancer Res. 2006; 12(19):5698-704. DOI: 10.1158/1078-0432.CCR-06-0181. View

4.
Jayaram S, Gupta M, Polisetty R, Cho W, Sirdeshmukh R . Towards developing biomarkers for glioblastoma multiforme: a proteomics view. Expert Rev Proteomics. 2014; 11(5):621-39. DOI: 10.1586/14789450.2014.939634. View

5.
Louis D, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee W . The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131(6):803-20. DOI: 10.1007/s00401-016-1545-1. View