» Articles » PMID: 29507295

Uncovering the Balance of Forces Driving Microtubule Aster Migration in C. Elegans Zygotes

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Mar 7
PMID 29507295
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Microtubule asters must be positioned precisely within cells. How forces generated by molecular motors such as dynein are integrated in space and time to enable such positioning remains unclear. In particular, whereas aster movements depend on the drag caused by cytoplasm viscosity, in vivo drag measurements are lacking, precluding a thorough understanding of the mechanisms governing aster positioning. Here, we investigate this fundamental question during the migration of asters and pronuclei in C. elegans zygotes, a process essential for the mixing of parental genomes. Detailed quantification of these movements using the female pronucleus as an in vivo probe establish that the drag coefficient of the male-asters complex is approximately five times that of the female pronucleus. Further analysis of embryos lacking cortical dynein, the connection between asters and male pronucleus, or the male pronucleus altogether, uncovers the balance of dynein-driven forces that accurately position microtubule asters in C. elegans zygotes.

Citing Articles

Live-cell imaging under centrifugation characterized the cellular force for nuclear centration in the embryo.

Goda M, Shribak M, Ikeda Z, Okada N, Tani T, Goshima G Proc Natl Acad Sci U S A. 2024; 121(43):e2402759121.

PMID: 39413133 PMC: 11513977. DOI: 10.1073/pnas.2402759121.


The positioning mechanics of microtubule asters in embryo explants.

de-Carvalho J, Tlili S, Saunders T, Telley I Elife. 2024; 12.

PMID: 38426416 PMC: 10911390. DOI: 10.7554/eLife.90541.


Live-cell imaging under centrifugation characterized the cellular force for nuclear centration in the embryo.

Goda M, Shribak M, Ikeda Z, Okada N, Tani T, Goshima G bioRxiv. 2024; .

PMID: 38260704 PMC: 10802357. DOI: 10.1101/2024.01.03.574024.


Measuring and modeling forces generated by microtubules.

Gudimchuk N, Alexandrova V Biophys Rev. 2023; 15(5):1095-1110.

PMID: 37974983 PMC: 10643784. DOI: 10.1007/s12551-023-01161-7.


Size- and position-dependent cytoplasm viscoelasticity through hydrodynamic interactions with the cell surface.

Najafi J, Dmitrieff S, Minc N Proc Natl Acad Sci U S A. 2023; 120(9):e2216839120.

PMID: 36802422 PMC: 9992773. DOI: 10.1073/pnas.2216839120.


References
1.
Kimura K, Kimura A . Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo. Proc Natl Acad Sci U S A. 2010; 108(1):137-42. PMC: 3017145. DOI: 10.1073/pnas.1013275108. View

2.
Dujardin D, Vallee R . Dynein at the cortex. Curr Opin Cell Biol. 2002; 14(1):44-9. DOI: 10.1016/s0955-0674(01)00292-7. View

3.
Moore J, Stuchell-Brereton M, Cooper J . Function of dynein in budding yeast: mitotic spindle positioning in a polarized cell. Cell Motil Cytoskeleton. 2009; 66(8):546-55. PMC: 2746759. DOI: 10.1002/cm.20364. View

4.
Kemphues K, Kusch M, Wolf N . Maternal-effect lethal mutations on linkage group II of Caenorhabditis elegans. Genetics. 1988; 120(4):977-86. PMC: 1203589. DOI: 10.1093/genetics/120.4.977. View

5.
Nicholas M, Hook P, Brenner S, Wynne C, Vallee R, Gennerich A . Control of cytoplasmic dynein force production and processivity by its C-terminal domain. Nat Commun. 2015; 6:6206. PMC: 4339881. DOI: 10.1038/ncomms7206. View