» Articles » PMID: 29491394

Chimeric Peptide EP45 As a Dual Agonist at GLP-1 and NPY2R Receptors

Overview
Journal Sci Rep
Specialty Science
Date 2018 Mar 2
PMID 29491394
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

We report the design and target validation of chimeric peptide EP45, a novel 45 amino acid monomeric dual agonist peptide that contains amino acid sequence motifs present within the blood glucose-lowering agent exendin-4 (Ex-4) and the appetite-suppressing agent PYY(3-36). In a new high-throughput FRET assay that provides real-time kinetic information concerning levels of cAMP in living cells, EP45 recapitulates the action of Ex-4 to stimulate cAMP production via the glucagon-like peptide-1 receptor (GLP-1R), while also recapitulating the action of PYY(3-36) to inhibit cAMP production via the neuropeptide Y receptor (NPY2R). EP45 fails to activate glucagon or GIP receptors, whereas for cells that co-express NPY2R and adenosine A receptors, EP45 acts in an NPY2R-mediated manner to suppress stimulatory effects of adenosine on cAMP production. Collectively, such findings are remarkable in that they suggest a new strategy in which the co-existing metabolic disorders of type 2 diabetes and obesity will be treatable using a single peptide such as EP45 that lowers levels of blood glucose by virtue of its GLP-1R-mediated effect, while simultaneously suppressing appetite by virtue of its NPY2R-mediated effect.

Citing Articles

Photochemically-enabled, post-translational production of C-terminal amides.

Hymel D, Wojcik F, Halskov K, Hogendorf W, Wong S, Williams B Nat Commun. 2024; 15(1):7162.

PMID: 39616180 PMC: 11608224. DOI: 10.1038/s41467-024-51005-5.


Effects of systemic oxytocin and beta-3 receptor agonist (CL 316243) treatment on body weight and adiposity in male diet-induced obese rats.

Slattery J, Rambousek J, Tsui E, Honeycutt M, Goldberg M, Graham J bioRxiv. 2024; .

PMID: 39502365 PMC: 11537314. DOI: 10.1101/2024.09.27.615550.


The Brain-Heart Network of Syncope.

Barik S, Riddell T Int J Mol Sci. 2024; 25(13).

PMID: 39000068 PMC: 11241714. DOI: 10.3390/ijms25136959.


Molecular hybridization strategy for tuning bioactive peptide function.

Pedron C, Torres M, Oliveira C, Silva A, Andrade G, Wang Y Commun Biol. 2023; 6(1):1067.

PMID: 37857855 PMC: 10587126. DOI: 10.1038/s42003-023-05254-7.


Optimization of a Glucagon-Like Peptide 1 Receptor Antagonist Antibody for Treatment of Hyperinsulinism.

Peterson S, Juliana C, Hu C, Chai J, Holliday C, Chan K Diabetes. 2023; 72(9):1320-1329.

PMID: 37358194 PMC: 10450825. DOI: 10.2337/db22-1039.


References
1.
Tatemoto K, Mutt V . Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature. 1980; 285(5764):417-8. DOI: 10.1038/285417a0. View

2.
Pedersen S, Sasikumar P, Chelur S, Holst B, Artmann A, Jensen K . Peptide hormone isoforms: N-terminally branched PYY3-36 isoforms give improved lipid and fat-cell metabolism in diet-induced obese mice. J Pept Sci. 2010; 16(11):664-73. DOI: 10.1002/psc.1281. View

3.
Choudhury S, Tan T, Bloom S . Gastrointestinal hormones and their role in obesity. Curr Opin Endocrinol Diabetes Obes. 2015; 23(1):18-22. DOI: 10.1097/MED.0000000000000216. View

4.
Murphy K, Dhillo W, Bloom S . Gut peptides in the regulation of food intake and energy homeostasis. Endocr Rev. 2006; 27(7):719-27. DOI: 10.1210/er.2006-0028. View

5.
Holz G, Chepurny O . Glucagon-like peptide-1 synthetic analogs: new therapeutic agents for use in the treatment of diabetes mellitus. Curr Med Chem. 2003; 10(22):2471-83. PMC: 2911578. DOI: 10.2174/0929867033456648. View