» Articles » PMID: 2948490

A Kinetic Model for the Ca2+ + Mg2+-activated ATPase of Sarcoplasmic Reticulum

Overview
Journal Biochem J
Specialty Biochemistry
Date 1986 Jul 1
PMID 2948490
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

The Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum exhibits complex kinetics of activation with respect to ATP. ATPase activity is pH-dependent, with similar pH-activity profiles at high and low concentrations of ATP. Low concentrations of Ca2+ in the micromolar range activate the ATPase, whereas activity is inhibited by Ca2+ at millimolar concentrations. The pH-dependence of this Ca2+ inhibition and the effect of the detergent C12E8 (dodecyl octaethylene glycol monoether) on Ca2+ inhibition are similar to those observed on activation by low concentrations of Ca2+. On the basis of these and other studies we present a kinetic model for the ATPase. The ATPase is postulated to exist in one of two conformations: a conformation (E1) of high affinity for Ca2+ and MgATP and a conformation (E2) of low affinity for Ca2+ and MgATP. Ca2+ binding to E2 and to the phosphorylated form E2P are equal. Proton binding at the Ca2+-binding sites in the E1 and E2 conformations explains the pH-dependence of Ca2+ effects. Binding of MgATP to the phosphorylated intermediate E1'PCa2 and to E2 modulate the rates of the transport step E1'PCa-E2'PCa2 and the return of the empty Ca2+ sites to the outside surface of the sarcoplasmic reticulum, as well as the rate of dephosphorylation of E2P. Only a single binding site for MgATP is postulated.

Citing Articles

The SERCA residue Glu340 mediates interdomain communication that guides Ca transport.

Geurts M, Clausen J, Arnou B, Montigny C, Lenoir G, Corey R Proc Natl Acad Sci U S A. 2020; 117(49):31114-31122.

PMID: 33229570 PMC: 7733806. DOI: 10.1073/pnas.2014896117.


Rutin stimulates sarcoplasmic reticulum Ca(2+)-ATPase activity (SERCA1) and protects SERCA1 from peroxynitrite mediated injury.

Viskupicova J, Strosova M, Zizkova P, Majekova M, Horakova L Mol Cell Biochem. 2014; 402(1-2):51-62.

PMID: 25547066 DOI: 10.1007/s11010-014-2313-y.


Biochemical characteristics of the Ca2+ pumping ATPase in the peribacteroid membrane from broad bean root nodules.

Krylova V, Andreev I, Zartdinova R, Izmailov S Protoplasma. 2012; 250(2):531-8.

PMID: 22872095 DOI: 10.1007/s00709-012-0436-0.


Kinetic and mesoscopic non-equilibrium description of the Ca(2+) pump: a comparison.

Lervik A, Bedeaux D, Kjelstrup S Eur Biophys J. 2012; 41(5):437-48.

PMID: 22453991 DOI: 10.1007/s00249-012-0797-5.


A thermodynamic model of the cardiac sarcoplasmic/endoplasmic Ca(2+) (SERCA) pump.

Tran K, Smith N, Loiselle D, Crampin E Biophys J. 2009; 96(5):2029-42.

PMID: 19254563 PMC: 2717298. DOI: 10.1016/j.bpj.2008.11.045.


References
1.
Gruys K, Urbauer J, Schuster S . Metal-nucleotide structural characteristics during catalysis by beef heart mitochondrial F1. J Biol Chem. 1985; 260(11):6533-40. View

2.
Froehlich J, Heller P . Transient-state kinetics of the ADP-insensitive phosphoenzyme in sarcoplasmic reticulum: implications for transient-state calcium translocation. Biochemistry. 1985; 24(1):126-36. DOI: 10.1021/bi00322a018. View

3.
Froud R, Lee A . A model for the phosphorylation of the Ca2+ + Mg2+-activated ATPase by phosphate. Biochem J. 1986; 237(1):207-15. PMC: 1146967. DOI: 10.1042/bj2370207. View

4.
Garrahan P, Rega A, Alonso G . The interaction of magnesium ions with the calcium pump of sarcoplasmic reticulum. Biochim Biophys Acta. 1976; 448(1):121-32. DOI: 10.1016/0005-2736(76)90081-x. View

5.
DUPONT Y . Kinetics and regulation of sarcoplasmic reticulum ATPase. Eur J Biochem. 1977; 72(1):185-90. DOI: 10.1111/j.1432-1033.1977.tb11238.x. View