Validating the Pivotal Role of the Immune System in Low-dose Radiation-induced Tumor Inhibition in Lewis Lung Cancer-bearing Mice
Overview
Authors
Affiliations
Although low-dose radiation (LDR) possesses the two distinct functions of inducing hormesis and adaptive responses, which result in immune enhancement and tumor inhibition, its clinical applications have not yet been elucidated. The major obstacle that hinders the application of LDR in the clinical setting is that the mechanisms underlying induction of tumor inhibition are unclear, and the risks associated with LDR are still unknown. Thus, to overcome this obstacle and elucidate the mechanisms mediating the antitumor effects of LDR, in this study, we established an in vivo lung cancer model to investigate the participation of the immune system in LDR-induced tumor inhibition and validated the pivotal role of the immune system by impairing immunity with high-dose radiation (HDR) of 1 Gy. Additionally, the LDR-induced adaptive response of the immune system was also observed by sequential HDR treatment in this mouse model. We found that LDR-activated T cells and natural killer cells and increased the cytotoxicity of splenocytes and the infiltration of T cells in the tumor tissues. In contrast, when immune function was impaired by HDR pretreatment, LDR could not induce tumor inhibition. However, when LDR was administered before HDR, the immunity could be protected from impairment, and tumor growth could be inhibited to some extent, indicating the induction of the immune adaptive response by LDR. Therefore, we demonstrated that immune enhancement played a key role in LDR-induced tumor inhibition. These findings emphasized the importance of the immune response in tumor radiotherapy and may help promote the application of LDR as a novel approach in clinical practice.
Fomina D, Rozhdestvensky L, Raeva N, Vorobeva E, Zasukhina G Dokl Biochem Biophys. 2025; .
PMID: 39847289 DOI: 10.1134/S160767292470128X.
Wei X, Yi J, Zhang C, Wang M, Wang R, Xu W Dose Response. 2024; 22(2):15593258241245804.
PMID: 38617388 PMC: 11010768. DOI: 10.1177/15593258241245804.
Sartorius D, Blume M, Fleischer J, Ghadimi M, Conradi L, De Oliveira T Cancers (Basel). 2023; 15(21).
PMID: 37958298 PMC: 10650490. DOI: 10.3390/cancers15215124.
Radiotherapy Improves the Disability in Patients with Secondary Progressive Multiple Sclerosis.
Ebrahimi H, Larizadeh M, Saba M, Jafarzadeh A J Biomed Phys Eng. 2023; 13(4):317-322.
PMID: 37609511 PMC: 10440411. DOI: 10.31661/jbpe.v0i0.2012-1238.
Low-Dose Non-Targeted Effects and Mitochondrial Control.
Averbeck D Int J Mol Sci. 2023; 24(14).
PMID: 37511215 PMC: 10380638. DOI: 10.3390/ijms241411460.