» Articles » PMID: 29465983

Targeting the Proteostasis Network for Mycobacterial Drug Discovery

Overview
Journal ACS Infect Dis
Date 2018 Feb 22
PMID 29465983
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the world's deadliest infectious diseases and urgently requires new antibiotics to treat drug-resistant strains and to decrease the duration of therapy. During infection, Mtb encounters numerous stresses associated with host immunity, including hypoxia, reactive oxygen and nitrogen species, mild acidity, nutrient starvation, and metal sequestration and intoxication. The Mtb proteostasis network, composed of chaperones, proteases, and a eukaryotic-like proteasome, provides protection from stresses and chemistries of host immunity by maintaining the integrity of the mycobacterial proteome. In this Review, we explore the proteostasis network as a noncanonical target for antibacterial drug discovery.

Citing Articles

Proteostasis modulates gene dosage evolution in antibiotic-resistant bacteria.

Jena C, Chinnaraj S, Deolankar S, Matange N Elife. 2025; 13.

PMID: 40073078 PMC: 11903035. DOI: 10.7554/eLife.99785.


Enhancing rufomycin production by CRISPR/Cas9-based genome editing and promoter engineering in sp. MJM3502.

Su C, Tuan N, Li W, Cheng J, Jin Y, Hong S Synth Syst Biotechnol. 2025; 10(2):421-432.

PMID: 39925944 PMC: 11803874. DOI: 10.1016/j.synbio.2025.01.002.


Cell-autonomous targeting of arabinogalactan by host immune factors inhibits mycobacterial growth.

Qin L, Xu J, Chen J, Wang S, Zheng R, Cui Z Elife. 2024; 13.

PMID: 39495223 PMC: 11534329. DOI: 10.7554/eLife.92737.


A native mass spectrometry approach to qualitatively elucidate interfacial epitopes of transient protein-protein interactions.

Veale C, Chakraborty A, Mhlanga R, Albericio F, de la Torre B, Edkins A Chem Commun (Camb). 2024; 60(45):5844-5847.

PMID: 38752317 PMC: 11139139. DOI: 10.1039/d4cc01251h.


HtpG-A Major Virulence Factor and a Promising Vaccine Antigen against .

Berisio R, Barra G, Napolitano V, Privitera M, Romano M, Squeglia F Biomolecules. 2024; 14(4).

PMID: 38672487 PMC: 11048413. DOI: 10.3390/biom14040471.


References
1.
Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R . Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol. 2007; 3(6):323-4. DOI: 10.1038/nchembio884. View

2.
Voskuil M, Bartek I, Visconti K, Schoolnik G . The response of mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front Microbiol. 2011; 2:105. PMC: 3119406. DOI: 10.3389/fmicb.2011.00105. View

3.
Gold B, Nathan C . Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr. 2017; 5(1). PMC: 5367488. DOI: 10.1128/microbiolspec.TBTB2-0031-2016. View

4.
Lupoli T, Fay A, Adura C, Glickman M, Nathan C . Reconstitution of a Mycobacterium tuberculosis proteostasis network highlights essential cofactor interactions with chaperone DnaK. Proc Natl Acad Sci U S A. 2016; 113(49):E7947-E7956. PMC: 5150378. DOI: 10.1073/pnas.1617644113. View

5.
Kohanski M, Dwyer D, Hayete B, Lawrence C, Collins J . A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007; 130(5):797-810. DOI: 10.1016/j.cell.2007.06.049. View