» Articles » PMID: 29459739

Localization of Adaptive Variants in Human Genomes Using Averaged One-dependence Estimation

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Feb 21
PMID 29459739
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

Statistical methods for identifying adaptive mutations from population genetic data face several obstacles: assessing the significance of genomic outliers, integrating correlated measures of selection into one analytic framework, and distinguishing adaptive variants from hitchhiking neutral variants. Here, we introduce SWIF(r), a probabilistic method that detects selective sweeps by learning the distributions of multiple selection statistics under different evolutionary scenarios and calculating the posterior probability of a sweep at each genomic site. SWIF(r) is trained using simulations from a user-specified demographic model and explicitly models the joint distributions of selection statistics, thereby increasing its power to both identify regions undergoing sweeps and localize adaptive mutations. Using array and exome data from 45 ‡Khomani San hunter-gatherers of southern Africa, we identify an enrichment of adaptive signals in genes associated with metabolism and obesity. SWIF(r) provides a transparent probabilistic framework for localizing beneficial mutations that is extensible to a variety of evolutionary scenarios.

Citing Articles

Sweeps in space: leveraging geographic data to identify beneficial alleles in .

Rehmann C, Small S, Ralph P, Kern A bioRxiv. 2025; .

PMID: 39975147 PMC: 11839090. DOI: 10.1101/2025.02.07.637123.


Digital Image Processing to Detect Adaptive Evolution.

Amin M, Hasan M, DeGiorgio M Mol Biol Evol. 2024; 41(12).

PMID: 39565932 PMC: 11631197. DOI: 10.1093/molbev/msae242.


The multi-tissue gene expression and physiological responses of water deprived Peromyscus eremicus.

Blumstein D, MacManes M BMC Genomics. 2024; 25(1):770.

PMID: 39118009 PMC: 11308687. DOI: 10.1186/s12864-024-10629-z.


Hunter-gatherer genetics research: Importance and avenues.

Padilla-Iglesias C, Derkx I Evol Hum Sci. 2024; 6:e15.

PMID: 38516374 PMC: 10955370. DOI: 10.1017/ehs.2024.7.


Interpreting generative adversarial networks to infer natural selection from genetic data.

Riley R, Mathieson I, Mathieson S Genetics. 2024; 226(4).

PMID: 38386895 PMC: 10990424. DOI: 10.1093/genetics/iyae024.


References
1.
Scott R, Lagou V, Welch R, Wheeler E, Montasser M, Luan J . Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012; 44(9):991-1005. PMC: 3433394. DOI: 10.1038/ng.2385. View

2.
Hudson R . Genetic Data Analysis. Methods for Discrete Population Genetic Data. Bruce S. Weir. Sinauer, Sunderland, MA, 1990. xiv, 377 pp., illus. $48; paper, $27. Science. 1990; 250(4980):575. DOI: 10.1126/science.250.4980.575. View

3.
Gravel S, Henn B, Gutenkunst R, Indap A, Marth G, Clark A . Demographic history and rare allele sharing among human populations. Proc Natl Acad Sci U S A. 2011; 108(29):11983-8. PMC: 3142009. DOI: 10.1073/pnas.1019276108. View

4.
Kimura R, Yamaguchi T, Takeda M, Kondo O, Toma T, Haneji K . A common variation in EDAR is a genetic determinant of shovel-shaped incisors. Am J Hum Genet. 2009; 85(4):528-35. PMC: 2756549. DOI: 10.1016/j.ajhg.2009.09.006. View

5.
Kim D, Kim Y, Hynx D, Wang Y, Yang K, Ryu D . PKB/Akt phosphorylation of ERRγ contributes to insulin-mediated inhibition of hepatic gluconeogenesis. Diabetologia. 2014; 57(12):2576-85. DOI: 10.1007/s00125-014-3366-x. View