» Articles » PMID: 29456073

An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans

Abstract

A carbohydrate-restricted diet is a widely recommended intervention for non-alcoholic fatty liver disease (NAFLD), but a systematic perspective on the multiple benefits of this diet is lacking. Here, we performed a short-term intervention with an isocaloric low-carbohydrate diet with increased protein content in obese subjects with NAFLD and characterized the resulting alterations in metabolism and the gut microbiota using a multi-omics approach. We observed rapid and dramatic reductions of liver fat and other cardiometabolic risk factors paralleled by (1) marked decreases in hepatic de novo lipogenesis; (2) large increases in serum β-hydroxybutyrate concentrations, reflecting increased mitochondrial β-oxidation; and (3) rapid increases in folate-producing Streptococcus and serum folate concentrations. Liver transcriptomic analysis on biopsy samples from a second cohort revealed downregulation of the fatty acid synthesis pathway and upregulation of folate-mediated one-carbon metabolism and fatty acid oxidation pathways. Our results highlight the potential of exploring diet-microbiota interactions for treating NAFLD.

Citing Articles

The Influence of Physical Exercise, Ketogenic Diet, and Time-Restricted Eating on De Novo Lipogenesis: A Narrative Review.

Paoli A Nutrients. 2025; 17(4).

PMID: 40004991 PMC: 11858292. DOI: 10.3390/nu17040663.


Current Therapeutic Landscape for Metabolic Dysfunction-Associated Steatohepatitis.

Devasia A, Ramasamy A, Leo C Int J Mol Sci. 2025; 26(4).

PMID: 40004240 PMC: 11855529. DOI: 10.3390/ijms26041778.


Energy metabolism in health and diseases.

Liu H, Wang S, Wang J, Guo X, Song Y, Fu K Signal Transduct Target Ther. 2025; 10(1):69.

PMID: 39966374 PMC: 11836267. DOI: 10.1038/s41392-025-02141-x.


Macronutrient Modulation in Metabolic Dysfunction-Associated Steatotic Liver Disease-the Molecular Role of Fatty Acids compared with Sugars in Human Metabolism and Disease Progression.

Mullin S, Kelly A, Ni Chathail M, Norris S, Shannon C, Roche H Adv Nutr. 2025; 16(3):100375.

PMID: 39842721 PMC: 11849631. DOI: 10.1016/j.advnut.2025.100375.


Multi-omics characterization of improved cognitive functions in Parkinson's disease patients after the combined metabolic activator treatment: a randomized, double-blinded, placebo-controlled phase II trial.

Yulug B, Altay O, Li X, Hanoglu L, Cankaya S, Velioglu H Brain Commun. 2025; 7(1):fcae478.

PMID: 39816194 PMC: 11733689. DOI: 10.1093/braincomms/fcae478.


References
1.
Kanehisa M, Goto S . KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999; 28(1):27-30. PMC: 102409. DOI: 10.1093/nar/28.1.27. View

2.
Lewis G, Carpentier A, Adeli K, Giacca A . Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002; 23(2):201-29. DOI: 10.1210/edrv.23.2.0461. View

3.
Halsted C, Villanueva J, Devlin A, Niemela O, Parkkila S, Garrow T . Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig. Proc Natl Acad Sci U S A. 2002; 99(15):10072-7. PMC: 126626. DOI: 10.1073/pnas.112336399. View

4.
Foster G, Wyatt H, Hill J, McGuckin B, Brill C, Mohammed B . A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med. 2003; 348(21):2082-90. DOI: 10.1056/NEJMoa022207. View

5.
KEKWICK A, PAWAN G . Calorie intake in relation to body-weight changes in the obese. Lancet. 1956; 271(6935):155-61. DOI: 10.1016/s0140-6736(56)91691-9. View