» Articles » PMID: 29449649

Predicting Sex from Brain Rhythms with Deep Learning

Overview
Journal Sci Rep
Specialty Science
Date 2018 Feb 17
PMID 29449649
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

We have excellent skills to extract sex from visual assessment of human faces, but assessing sex from human brain rhythms seems impossible. Using deep convolutional neural networks, with unique potential to find subtle differences in apparent similar patterns, we explore if brain rhythms from either sex contain sex specific information. Here we show, in a ground truth scenario, that a deep neural net can predict sex from scalp electroencephalograms with an accuracy of >80% (p < 10), revealing that brain rhythms are sex specific. Further, we extracted sex-specific features from the deep net filter layers, showing that fast beta activity (20-25 Hz) and its spatial distribution is a main distinctive attribute. This demonstrates the ability of deep nets to detect features in spatiotemporal data unnoticed by visual assessment, and to assist in knowledge discovery. We anticipate that this approach may also be successfully applied to other specialties where spatiotemporal data is abundant, including neurology, cardiology and neuropsychology.

Citing Articles

Age-related changes in neural oscillations vary as a function of brain region and frequency band.

Park J, Ho R, Wang W, Chiu S, Shin Y, Coombes S Front Aging Neurosci. 2025; 17:1488811.

PMID: 40040743 PMC: 11876397. DOI: 10.3389/fnagi.2025.1488811.


Advancing EEG prediction with deep learning and uncertainty estimation.

Tveter M, Tveitstol T, Hatlestad-Hall C, Perez T A, Tauboll E, Yazidi A Brain Inform. 2024; 11(1):27.

PMID: 39461914 PMC: 11512943. DOI: 10.1186/s40708-024-00239-6.


Neural Dynamics Associated with Biological Variation in Normal Human Brain Regions.

Guisande N, Rosso O, Montani F Entropy (Basel). 2024; 26(10).

PMID: 39451905 PMC: 11507151. DOI: 10.3390/e26100828.


Machine learning of brain-specific biomarkers from EEG.

Bomatter P, Paillard J, Garces P, Hipp J, Engemann D EBioMedicine. 2024; 106:105259.

PMID: 39106531 PMC: 11347073. DOI: 10.1016/j.ebiom.2024.105259.


Bimodal Transformer with Regional EEG Data for Accurate Gameplay Regularity Classification.

Lee J, Han J Brain Sci. 2024; 14(3).

PMID: 38539670 PMC: 10968434. DOI: 10.3390/brainsci14030282.


References
1.
Hofmeijer J, Beernink T, Bosch F, Beishuizen A, Tjepkema-Cloostermans M, van Putten M . Early EEG contributes to multimodal outcome prediction of postanoxic coma. Neurology. 2015; 85(2):137-43. PMC: 4515041. DOI: 10.1212/WNL.0000000000001742. View

2.
Chouard T, Venema L . Machine intelligence. Nature. 2015; 521(7553):435. DOI: 10.1038/521435a. View

3.
Joel D, Berman Z, Tavor I, Wexler N, Gaber O, Stein Y . Sex beyond the genitalia: The human brain mosaic. Proc Natl Acad Sci U S A. 2015; 112(50):15468-73. PMC: 4687544. DOI: 10.1073/pnas.1509654112. View

4.
Tjepkema-Cloostermans M, Hofmeijer J, Trof R, Blans M, Beishuizen A, van Putten M . Electroencephalogram predicts outcome in patients with postanoxic coma during mild therapeutic hypothermia. Crit Care Med. 2014; 43(1):159-67. DOI: 10.1097/CCM.0000000000000626. View

5.
Buzsaki G . Neural syntax: cell assemblies, synapsembles, and readers. Neuron. 2010; 68(3):362-85. PMC: 3005627. DOI: 10.1016/j.neuron.2010.09.023. View