» Articles » PMID: 29446774

Proteome-wide Identification of Ubiquitin Interactions Using UbIA-MS

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2018 Feb 16
PMID 29446774
Citations 292
Authors
Affiliations
Soon will be listed here.
Abstract

Ubiquitin-binding proteins play an important role in eukaryotes by translating differently linked polyubiquitin chains into proper cellular responses. Current knowledge about ubiquitin-binding proteins and ubiquitin linkage-selective interactions is mostly based on case-by-case studies. We have recently reported a method called ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), which enables comprehensive identification of ubiquitin interactors for all ubiquitin linkages from crude cell lysates. One major strength of UbIA-MS is the fact that ubiquitin interactors are enriched from crude cell lysates, in which proteins are present at endogenous levels, contain biologically relevant post-translational modifications (PTMs) and are assembled in native protein complexes. In addition, UbIA-MS uses chemically synthesized nonhydrolyzable diubiquitin, which mimics native diubiquitin and is inert to cleavage by endogenous deubiquitinases (DUBs). Here, we present a detailed protocol for UbIA-MS that proceeds in five stages: (i) chemical synthesis of ubiquitin precursors and click chemistry for the generation of biotinylated nonhydrolyzable diubiquitin baits, (ii) in vitro affinity purification of ubiquitin interactors, (iii) on-bead interactor digestion, (iv) liquid chromatography (LC)-MS/MS analysis and (v) data analysis to identify differentially enriched proteins. The computational analysis tools are freely available as an open-source R software package, including a graphical interface. Typically, UbIA-MS allows the identification of dozens to hundreds of ubiquitin interactors from any type of cell lysate, and can be used to study cell type or stimulus-dependent ubiquitin interactions. The nonhydrolyzable diubiquitin synthesis can be completed in 3 weeks, followed by ubiquitin interactor enrichment and identification, which can be completed within another 2 weeks.

Citing Articles

Probe-dependent Proximity Profiling (ProPPr) Uncovers Similarities and Differences in Phospho-Tau-Associated Proteomes Between Tauopathies.

Morderer D, Wren M, Liu F, Kouri N, Maistrenko A, Khalil B Mol Neurodegener. 2025; 20(1):32.

PMID: 40082954 PMC: 11905455. DOI: 10.1186/s13024-025-00817-0.


In Situ and In Silico Methods for Senescence Identification in Human Liver Diseases.

Evangelou K, Belogiannis K, Pantelis P, Liaropoulos G, Skaltsas D, Sakellariou S Methods Mol Biol. 2025; 2906:1-20.

PMID: 40082347 DOI: 10.1007/978-1-0716-4426-3_1.


Spatial top-down proteomics for the functional characterization of human kidney.

Zemaitis K, Fulcher J, Kumar R, Degnan D, Lewis L, Liao Y Clin Proteomics. 2025; 22(1):9.

PMID: 40045235 PMC: 11881370. DOI: 10.1186/s12014-025-09531-x.


CTDP1 and RPB7 stabilize Pol II and permit reinitiation.

Zheng H, Xu Q, Ji D, Yang B, Ji X Nat Commun. 2025; 16(1):2161.

PMID: 40038320 PMC: 11880454. DOI: 10.1038/s41467-025-57513-2.


The Surface Proteome of Bovine Unsexed and Sexed Spermatozoa.

Pinto-Pinho P, Quelhas J, Impens F, Dufour S, Van Haver D, Lopes G Animals (Basel). 2025; 15(4).

PMID: 40002966 PMC: 11852025. DOI: 10.3390/ani15040484.


References
1.
Rappsilber J, Mann M, Ishihama Y . Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007; 2(8):1896-906. DOI: 10.1038/nprot.2007.261. View

2.
El Oualid F, Merkx R, Ekkebus R, Hameed D, Smit J, de Jong A . Chemical synthesis of ubiquitin, ubiquitin-based probes, and diubiquitin. Angew Chem Int Ed Engl. 2010; 49(52):10149-53. PMC: 3021723. DOI: 10.1002/anie.201005995. View

3.
Zhou Z, Fahrni C . A fluorogenic probe for the copper(I)-catalyzed azide-alkyne ligation reaction: modulation of the fluorescence emission via 3(n,pi)-1(pi,pi) inversion. J Am Chem Soc. 2004; 126(29):8862-3. DOI: 10.1021/ja049684r. View

4.
Tyanova S, Temu T, Cox J . The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016; 11(12):2301-2319. DOI: 10.1038/nprot.2016.136. View

5.
Weikart N, Sommer S, Mootz H . Click synthesis of ubiquitin dimer analogs to interrogate linkage-specific UBA domain binding. Chem Commun (Camb). 2011; 48(2):296-8. DOI: 10.1039/c1cc15834a. View