» Articles » PMID: 29427161

Safety of Pseudomonas Chlororaphis As a Gene Source for Genetically Modified Crops

Overview
Journal Transgenic Res
Specialty Molecular Biology
Date 2018 Feb 11
PMID 29427161
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Genetically modified crops undergo extensive evaluation to characterize their food, feed and environmental safety prior to commercial introduction, using a well-established, science-based assessment framework. One component of the safety assessment includes an evaluation of each introduced trait, including its source organism, for potential adverse pathogenic, toxic and allergenic effects. Several Pseudomonas species have a history of safe use in agriculture and certain species represent a source of genes with insecticidal properties. The ipd072Aa gene from P. chlororaphis encodes the IPD072Aa protein, which confers protection against certain coleopteran pests when expressed in maize plants. P. chlororaphis is ubiquitous in the environment, lacks known toxic or allergenic properties, and has a history of safe use in agriculture and in food and feed crops. This information supports, in part, the safety assessment of potential traits, such as IPD072Aa, that are derived from this source organism.

Citing Articles

New Insights into spp.-Produced Antibiotics: Genetic Regulation of Biosynthesis and Implementation in Biotechnology.

Baukova A, Bogun A, Sushkova S, Minkina T, Mandzhieva S, Alliluev I Antibiotics (Basel). 2024; 13(7).

PMID: 39061279 PMC: 11273644. DOI: 10.3390/antibiotics13070597.


Assessment of genetically modified maize DP23211 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2019-163).

Mullins E, Bresson J, Dalmay T, Dewhurst I, Epstein M, Firbank L EFSA J. 2024; 22(1):e8483.

PMID: 38239495 PMC: 10794937. DOI: 10.2903/j.efsa.2024.8483.


An environmental risk assessment of IPD079Ea: a protein derived from with activity against spp.In maize.

ONeill B, Boeckman C, LeRoy K, Linderblood C, Olson T, Woods R GM Crops Food. 2024; 15(1):15-31.

PMID: 38238889 PMC: 10802193. DOI: 10.1080/21645698.2023.2299503.


T6SS: A Key to Pseudomonas's Success in Biocontrol?.

Navarro-Monserrat E, Taylor C Microorganisms. 2023; 11(11).

PMID: 38004732 PMC: 10673566. DOI: 10.3390/microorganisms11112718.


IPD072Aa from Pseudomonas chlororaphis Targets Midgut Epithelial Cells in Killing Western Corn Rootworm ().

Jimenez-Juarez N, Oral J, Nelson M, Lu A Appl Environ Microbiol. 2023; 89(3):e0162222.

PMID: 36847510 PMC: 10057879. DOI: 10.1128/aem.01622-22.


References
1.
Sadikot R, Blackwell T, Christman J, Prince A . Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med. 2005; 171(11):1209-23. PMC: 2718459. DOI: 10.1164/rccm.200408-1044SO. View

2.
Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J . Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998; 62(3):775-806. PMC: 98934. DOI: 10.1128/MMBR.62.3.775-806.1998. View

3.
Chen Y, Shen X, Peng H, Hu H, Wang W, Zhang X . Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genom Data. 2015; 4:33-42. PMC: 4535895. DOI: 10.1016/j.gdata.2015.01.006. View

4.
Zhang Y, Bignell D, Zuo R, Fan Q, Huguet-Tapia J, Ding Y . Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic Streptomyces spp. Mol Plant Microbe Interact. 2016; 29(8):640-50. DOI: 10.1094/MPMI-04-16-0068-R. View

5.
Gomila M, Pena A, Mulet M, Lalucat J, Garcia-Valdes E . Phylogenomics and systematics in Pseudomonas. Front Microbiol. 2015; 6:214. PMC: 4447124. DOI: 10.3389/fmicb.2015.00214. View