» Articles » PMID: 29386746

Tomographic Phase Microscopy: Principles and Applications in Bioimaging [Invited]

Overview
Journal J Opt Soc Am B
Date 2018 Feb 2
PMID 29386746
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Tomographic phase microscopy (TPM) is an emerging optical microscopic technique for bioimaging. TPM uses digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index (RI) maps of cells with diffraction-limited resolution by solving inverse scattering problems. In this paper, we review the developments of TPM from the fundamental physics to its applications in bioimaging. We first provide a comprehensive description of the tomographic reconstruction physical models used in TPM. The RI map reconstruction algorithms and various regularization methods are discussed. Selected TPM applications for cellular imaging, particularly in hematology, are reviewed. Finally, we examine the limitations of current TPM systems, propose future solutions, and envision promising directions in biomedical research.

Citing Articles

Advances and Challenges in Modeling Autosomal Dominant Polycystic Kidney Disease: A Focus on Kidney Organoids.

Gu J, Liu F, Li L, Mao J Biomedicines. 2025; 13(2).

PMID: 40002937 PMC: 11852630. DOI: 10.3390/biomedicines13020523.


Integrating holotomography and deep learning for rapid detection of NPM1 mutations in AML.

Kim H, Kim G, Park H, Lee M, Park Y, Jang S Sci Rep. 2024; 14(1):23780.

PMID: 39390137 PMC: 11467337. DOI: 10.1038/s41598-024-75168-9.


Long-term three-dimensional high-resolution imaging of live unlabeled small intestinal organoids via low-coherence holotomography.

Lee M, Lee J, Ha J, Kim G, Kim H, Lee S Exp Mol Med. 2024; 56(10):2162-2170.

PMID: 39349827 PMC: 11541879. DOI: 10.1038/s12276-024-01312-0.


GAN-based quantitative oblique back-illumination microscopy enables computationally efficient epi-mode refractive index tomography.

Li Z, Casteleiro Costa P, Guang Z, Filan C, Robles F Biomed Opt Express. 2024; 15(8):4764-4774.

PMID: 39346989 PMC: 11427205. DOI: 10.1364/BOE.528968.


Statistical estimation theory detection limits for label-free imaging.

Wang L, Varughese M, Pezeshki A, Bartels R J Biomed Opt. 2024; 29(Suppl 2):S22716.

PMID: 39246531 PMC: 11379408. DOI: 10.1117/1.JBO.29.S2.S22716.


References
1.
Weerasinghe C, Yan H . An improved algorithm for rotational motion artifact suppression in MRI. IEEE Trans Med Imaging. 1998; 17(2):310-7. DOI: 10.1109/42.700744. View

2.
Gul-Mohammed J, Arganda-Carreras I, Andrey P, Galy V, Boudier T . A generic classification-based method for segmentation of nuclei in 3D images of early embryos. BMC Bioinformatics. 2014; 15:9. PMC: 3900670. DOI: 10.1186/1471-2105-15-9. View

3.
Witte S, Plauska A, Ridder M, van Berge L, Mansvelder H, Groot M . Short-coherence off-axis holographic phase microscopy of live cell dynamics. Biomed Opt Express. 2012; 3(9):2184-9. PMC: 3447560. DOI: 10.1364/BOE.3.002184. View

4.
Yoon J, Kim K, Park H, Choi C, Jang S, Park Y . Label-free characterization of white blood cells by measuring 3D refractive index maps. Biomed Opt Express. 2015; 6(10):3865-75. PMC: 4605046. DOI: 10.1364/BOE.6.003865. View

5.
Yamauchi T, Iwai H, Yamashita Y . Label-free imaging of intracellular motility by low-coherent quantitative phase microscopy. Opt Express. 2011; 19(6):5536-50. DOI: 10.1364/OE.19.005536. View