» Articles » PMID: 26504637

Label-free Characterization of White Blood Cells by Measuring 3D Refractive Index Maps

Overview
Specialty Radiology
Date 2015 Oct 28
PMID 26504637
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs.

Citing Articles

A label-free optical system with a nanohole array biosensor for discriminating live single cancer cells from normal cells.

Franco A, Vidal V, Gomez M, Gutierrez O, Martino M, Gonzalez F Nanophotonics. 2024; 11(2):315-328.

PMID: 39633886 PMC: 11501809. DOI: 10.1515/nanoph-2021-0499.


Quantitative phase imaging by gradient retardance optical microscopy.

Zhang J, Sarollahi M, Luckhart S, Harrison M, Vasdekis A Sci Rep. 2024; 14(1):9754.

PMID: 38679622 PMC: 11056386. DOI: 10.1038/s41598-024-60057-y.


Imaging the intracellular refractive index distribution (IRID) for dynamic label-free living colon cancer cells via circularly depolarization decay model (CDDM).

Wang H, Zhang L, Huang J, Yang Z, Fan C, Yuan L Biomed Opt Express. 2024; 15(4):2451-2465.

PMID: 38633098 PMC: 11019712. DOI: 10.1364/BOE.518957.


Deep learning-assisted smartphone-based quantitative microscopy for label-free peripheral blood smear analysis.

Huang B, Kang L, Tsang V, Lo C, Wong T Biomed Opt Express. 2024; 15(4):2636-2651.

PMID: 38633093 PMC: 11019683. DOI: 10.1364/BOE.511384.


Non-steady state thermometry with optical diffraction tomography.

Vasista A, Ciraulo B, Schmidt F, Ortega Arroyo J, Quidant R Sci Adv. 2024; 10(12):eadk5440.

PMID: 38517963 PMC: 10959403. DOI: 10.1126/sciadv.adk5440.


References
1.
Colomb T, Durr F, Cuche E, Marquet P, Limberger H, Salathe R . Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements. Appl Opt. 2005; 44(21):4461-9. DOI: 10.1364/ao.44.004461. View

2.
Handwerger K, Cordero J, Gall J . Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol Biol Cell. 2004; 16(1):202-11. PMC: 539164. DOI: 10.1091/mbc.e04-08-0742. View

3.
Ekpenyong A, Man S, Achouri S, Bryant C, Guck J, Chalut K . Bacterial infection of macrophages induces decrease in refractive index. J Biophotonics. 2012; 6(5):393-7. DOI: 10.1002/jbio.201200113. View

4.
Jourdain P, Pavillon N, Moratal C, Boss D, Rappaz B, Depeursinge C . Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study. J Neurosci. 2011; 31(33):11846-54. PMC: 6623187. DOI: 10.1523/JNEUROSCI.0286-11.2011. View

5.
Byun H, Hillman T, Higgins J, Diez-Silva M, Peng Z, Dao M . Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient. Acta Biomater. 2012; 8(11):4130-8. PMC: 3576574. DOI: 10.1016/j.actbio.2012.07.011. View