» Articles » PMID: 29352597

Potential Drug Targets in the Mycobacterium Tuberculosis Cytochrome P450 System

Overview
Journal J Inorg Biochem
Specialty Biochemistry
Date 2018 Jan 21
PMID 29352597
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The Mycobacterium tuberculosis genome encodes twenty cytochrome P450 enzymes, most or all of which appear to have specific physiological functions rather than being devoted to the removal of xenobiotics. However, in many cases their specific functions remain obscure. Considerable spectroscopic, biophysical, crystallographic, and catalytic information is available on nine of these cytochrome P450 enzymes, although gaps exist in our knowledge of even these enzymes. The available evidence indicates that at least three of the better-characterized enzymes are promising targets for antituberculosis drug discovery. This review summarizes the information on the nine relatively well-characterized cytochrome P450 enzymes, with a particular emphasis on CYP121, CYP125, and CYP142 from Mycobacterium tuberculosis and Mycobacterium smegmatis.

Citing Articles

Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review.

Abdelmonem B, Abdelaal N, Anwer E, Rashwan A, Hussein M, Ahmed Y Biomedicines. 2024; 12(7).

PMID: 39062040 PMC: 11275228. DOI: 10.3390/biomedicines12071467.


Structure-Function Analysis of the Essential P450 Drug Target, CYP121A1.

Padayachee T, Lamb D, Nelson D, Syed K Int J Mol Sci. 2024; 25(9).

PMID: 38732102 PMC: 11084333. DOI: 10.3390/ijms25094886.


In Situ Structural Observation of a Substrate- and Peroxide-Bound High-Spin Ferric-Hydroperoxo Intermediate in the P450 Enzyme CYP121.

Nguyen R, Davis I, Dasgupta M, Wang Y, Simon P, Butryn A J Am Chem Soc. 2023; 145(46):25120-25133.

PMID: 37939223 PMC: 10799213. DOI: 10.1021/jacs.3c04991.


Effects of second-line anti-tuberculosis drugs on the intestinal microbiota of patients with rifampicin-resistant tuberculosis.

Wu C, Yi H, Hu Y, Luo D, Tang Z, Wen X Front Cell Infect Microbiol. 2023; 13:1127916.

PMID: 37187470 PMC: 10178494. DOI: 10.3389/fcimb.2023.1127916.


The implication of Mycobacterium tuberculosis-mediated metabolism of targeted xenobiotics.

Singh V, Dziwornu G, Chibale K Nat Rev Chem. 2023; 7(5):340-354.

PMID: 37117810 PMC: 10026799. DOI: 10.1038/s41570-023-00472-3.


References
1.
Onderko E, Silakov A, Yosca T, Green M . Characterization of a selenocysteine-ligated P450 compound I reveals direct link between electron donation and reactivity. Nat Chem. 2017; 9(7):623-628. DOI: 10.1038/nchem.2781. View

2.
Ahmad Z, Sharma S, Khuller G . The potential of azole antifungals against latent/persistent tuberculosis. FEMS Microbiol Lett. 2006; 258(2):200-3. DOI: 10.1111/j.1574-6968.2006.00224.x. View

3.
Abuhammad A . Cholesterol metabolism: a potential therapeutic target in Mycobacteria. Br J Pharmacol. 2016; 174(14):2194-2208. PMC: 5481656. DOI: 10.1111/bph.13694. View

4.
Becher R, Wirsel S . Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl Microbiol Biotechnol. 2012; 95(4):825-40. DOI: 10.1007/s00253-012-4195-9. View

5.
Matsuura K, Yoshioka S, Tosha T, Hori H, Ishimori K, Kitagawa T . Structural diversities of active site in clinical azole-bound forms between sterol 14alpha-demethylases (CYP51s) from human and Mycobacterium tuberculosis. J Biol Chem. 2004; 280(10):9088-96. DOI: 10.1074/jbc.M413042200. View