Yu Z, Sifalakis M, Hunyadi B, Beutel F
PLOS Digit Health. 2024; 3(12):e0000659.
PMID: 39621608
PMC: 11611178.
DOI: 10.1371/journal.pdig.0000659.
Martinez-Rodrigo A, Castillo J, Saz-Lara A, Otero-Luis I, Cavero-Redondo I
Health Inf Sci Syst. 2024; 12(1):34.
PMID: 38707839
PMC: 11068708.
DOI: 10.1007/s13755-024-00292-9.
Hellqvist H, Karlsson M, Hoffman J, Kahan T, Spaak J
Front Cardiovasc Med. 2024; 11:1350726.
PMID: 38529332
PMC: 10961400.
DOI: 10.3389/fcvm.2024.1350726.
Tan L, Liu Y, Liu J, Zhang G, Liu Z, Shi R
Cardiovasc Diabetol. 2023; 22(1):311.
PMID: 37946205
PMC: 10637002.
DOI: 10.1186/s12933-023-02038-5.
Alavi R, Wang Q, Gorji H, Pahlevan N
PLoS One. 2023; 18(10):e0285228.
PMID: 37883430
PMC: 10602266.
DOI: 10.1371/journal.pone.0285228.
Instantaneous detection of acute myocardial infarction and ischaemia from a single carotid pressure waveform in rats.
Alavi R, Dai W, Matthews R, Kloner R, Pahlevan N
Eur Heart J Open. 2023; 3(5):oead099.
PMID: 37849787
PMC: 10578505.
DOI: 10.1093/ehjopen/oead099.
A learning-based image processing approach for pulse wave velocity estimation using spectrogram from peripheral pulse wave signals: An study.
Vargas J, Bahloul M, Laleg-Kirati T
Front Physiol. 2023; 14:1100570.
PMID: 36935738
PMC: 10020726.
DOI: 10.3389/fphys.2023.1100570.
Central Arterial Dynamic Evaluation from Peripheral Blood Pressure Waveforms Using CycleGAN: An In Silico Approach.
Aguirre N, Cymberknop L, Grall-Maes E, Ipar E, Armentano R
Sensors (Basel). 2023; 23(3).
PMID: 36772599
PMC: 9919893.
DOI: 10.3390/s23031559.
Screening left ventricular systolic dysfunction in children using intrinsic frequencies of carotid pressure waveforms measured by a novel smartphone-based device.
Cheng A, Liu J, Bravo S, Miller J, Pahlevan N
Physiol Meas. 2023; 44(3).
PMID: 36753767
PMC: 11073485.
DOI: 10.1088/1361-6579/acba7b.
Abdominal aortic aneurysm monitoring via arterial waveform analysis: towards a convenient point-of-care device.
Yavarimanesh M, Cheng H, Chen C, Sung S, Mahajan A, Chaer R
NPJ Digit Med. 2022; 5(1):168.
PMID: 36329099
PMC: 9633589.
DOI: 10.1038/s41746-022-00717-3.
Leveraging the potential of machine learning for assessing vascular ageing: state-of-the-art and future research.
Bikia V, Fong T, Climie R, Bruno R, Hametner B, Mayer C
Eur Heart J Digit Health. 2022; 2(4):676-690.
PMID: 35316972
PMC: 7612526.
DOI: 10.1093/ehjdh/ztab089.
Determination of aortic pulse transit time based on waveform decomposition of radial pressure wave.
Liu W, Song D, Yao Y, Qi L, Hao L, Yang J
Sci Rep. 2021; 11(1):20154.
PMID: 34635739
PMC: 8505599.
DOI: 10.1038/s41598-021-99723-w.
Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms.
Jin W, Chowienczyk P, Alastruey J
PLoS One. 2021; 16(6):e0245026.
PMID: 34181640
PMC: 8238176.
DOI: 10.1371/journal.pone.0245026.
Determination of Aortic Characteristic Impedance and Total Arterial Compliance From Regional Pulse Wave Velocities Using Machine Learning: An Study.
Bikia V, Rovas G, Pagoulatou S, Stergiopulos N
Front Bioeng Biotechnol. 2021; 9:649866.
PMID: 34055758
PMC: 8155726.
DOI: 10.3389/fbioe.2021.649866.
Estimated pulse wave velocity and cardiovascular events in Chinese.
Ji C, Gao J, Huang Z, Chen S, Wang G, Wu S
Int J Cardiol Hypertens. 2021; 7:100063.
PMID: 33447784
PMC: 7803041.
DOI: 10.1016/j.ijchy.2020.100063.
Association of Estimated Pulse Wave Velocity With Survival: A Secondary Analysis of SPRINT.
Vlachopoulos C, Terentes-Printzios D, Laurent S, Nilsson P, Protogerou A, Aznaouridis K
JAMA Netw Open. 2019; 2(10):e1912831.
PMID: 31596491
PMC: 6802234.
DOI: 10.1001/jamanetworkopen.2019.12831.
Gastroenterology Meets Machine Learning: Status Quo and Quo Vadis.
Adadi A, Adadi S, Berrada M
Adv Bioinformatics. 2019; 2019:1870975.
PMID: 31065266
PMC: 6466966.
DOI: 10.1155/2019/1870975.