» Articles » PMID: 29340302

Localized Concentration Reversal of Lithium During Intercalation into Nanoparticles

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2018 Jan 18
PMID 29340302
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Nanoparticulate electrodes, such as Li FePO, have unique advantages over their microparticulate counterparts for the applications in Li-ion batteries because of the shortened diffusion path and access to nonequilibrium routes for fast Li incorporation, thus radically boosting power density of the electrodes. However, how Li intercalation occurs locally in a single nanoparticle of such materials remains unresolved because real-time observation at such a fine scale is still lacking. We report visualization of local Li intercalation via solid-solution transformation in individual Li FePO nanoparticles, enabled by probing sub-angstrom changes in the lattice spacing in situ. The real-time observation reveals inhomogeneous intercalation, accompanied with an unexpected reversal of Li concentration at the nanometer scale. The origin of the reversal phenomenon is elucidated through phase-field simulations, and it is attributed to the presence of structurally different regions that have distinct chemical potential functions. The findings from this study provide a new perspective on the local intercalation dynamics in battery electrodes.

Citing Articles

Stepwise Structural Relaxation in Battery Active Materials.

Skurtveit A, North E, Park H, Chernyshov D, Wragg D, Koposov A ACS Mater Lett. 2025; 7(1):343-349.

PMID: 39790737 PMC: 11707793. DOI: 10.1021/acsmaterialslett.4c02058.


Inorganic-organic competitive coating strategy derived uniform hollow gradient-structured ferroferric oxide-carbon nanospheres for ultra-fast and long-term lithium-ion battery.

Xia Y, Zhao T, Zhu X, Zhao Y, He H, Hung C Nat Commun. 2021; 12(1):2973.

PMID: 34016965 PMC: 8137936. DOI: 10.1038/s41467-021-23150-8.


Phase evolution and structural modulation during in situ lithiation of MoS, WS and graphite in TEM.

Ghosh C, Singh M, Parida S, Janish M, Dobley A, Dongare A Sci Rep. 2021; 11(1):9014.

PMID: 33907244 PMC: 8079398. DOI: 10.1038/s41598-021-88395-1.


Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries.

Lou S, Liu Q, Zhang F, Liu Q, Yu Z, Mu T Nat Commun. 2020; 11(1):5700.

PMID: 33177510 PMC: 7658997. DOI: 10.1038/s41467-020-19528-9.


Controllable two-dimensional movement and redistribution of lithium ions in metal oxides.

Tang X, Chen G, Mo Z, Ma D, Wang S, Wen J Nat Commun. 2019; 10(1):2888.

PMID: 31253847 PMC: 6599050. DOI: 10.1038/s41467-019-10875-w.


References
1.
Yamada A, Koizumi H, Nishimura S, Sonoyama N, Kanno R, Yonemura M . Room-temperature miscibility gap in LixFePO4. Nat Mater. 2006; 5(5):357-60. DOI: 10.1038/nmat1634. View

2.
Sharma N, Guo X, Du G, Guo Z, Wang J, Wang Z . Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO4. J Am Chem Soc. 2012; 134(18):7867-73. DOI: 10.1021/ja301187u. View

3.
Whittingham M . Ultimate limits to intercalation reactions for lithium batteries. Chem Rev. 2014; 114(23):11414-43. DOI: 10.1021/cr5003003. View

4.
Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S . Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. Nat Mater. 2008; 7(9):741-7. DOI: 10.1038/nmat2245. View

5.
Nie A, Gan L, Cheng Y, Asayesh-Ardakani H, Li Q, Dong C . Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials. ACS Nano. 2013; 7(7):6203-11. DOI: 10.1021/nn402125e. View