» Articles » PMID: 26345306

Combined Operando X-ray Diffraction-electrochemical Impedance Spectroscopy Detecting Solid Solution Reactions of LiFePO4 in Batteries

Overview
Journal Nat Commun
Specialty Biology
Date 2015 Sep 9
PMID 26345306
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4.

Citing Articles

The redox aspects of lithium-ion batteries.

Peljo P, Villevieille C, Girault H Energy Environ Sci. 2025; 18(4):1658-1672.

PMID: 39866363 PMC: 11753199. DOI: 10.1039/d4ee04560b.


Identifying critical features of iron phosphate particle for lithium preference.

Yan G, Wei J, Apodaca E, Choi S, Eng P, Stubbs J Nat Commun. 2024; 15(1):4859.

PMID: 38849339 PMC: 11161493. DOI: 10.1038/s41467-024-49191-3.


Nonequilibrium Electrochemical Phase Maps: Beyond Butler-Volmer Kinetics.

Kurchin R, Gandhi D, Viswanathan V J Phys Chem Lett. 2023; 14(35):7802-7807.

PMID: 37616522 PMC: 10494226. DOI: 10.1021/acs.jpclett.3c01992.


The role of solid solutions in iron phosphate-based electrodes for selective electrochemical lithium extraction.

Yan G, Kim G, Yuan R, Hoenig E, Shi F, Chen W Nat Commun. 2022; 13(1):4579.

PMID: 35931691 PMC: 9355959. DOI: 10.1038/s41467-022-32369-y.


MgH-CoO: a conversion-type composite electrode for LiBH-based all-solid-state lithium ion batteries.

El Kharbachi A, Uesato H, Kawai H, Wenner S, Miyaoka H, Sorby M RSC Adv. 2022; 8(41):23468-23474.

PMID: 35540131 PMC: 9081632. DOI: 10.1039/c8ra03340d.


References
1.
Sharma N, Guo X, Du G, Guo Z, Wang J, Wang Z . Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO4. J Am Chem Soc. 2012; 134(18):7867-73. DOI: 10.1021/ja301187u. View

2.
Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S . Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. Nat Mater. 2008; 7(9):741-7. DOI: 10.1038/nmat2245. View

3.
Armand M, Tarascon J . Building better batteries. Nature. 2008; 451(7179):652-7. DOI: 10.1038/451652a. View

4.
Zhang X, van Hulzen M, Singh D, Brownrigg A, Wright J, van Dijk N . Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4. Nano Lett. 2014; 14(5):2279-85. DOI: 10.1021/nl404285y. View

5.
Chung S, Bloking J, Chiang Y . Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater. 2003; 1(2):123-8. DOI: 10.1038/nmat732. View