6.
Nussler A, Wildemann B, Freude T, Litzka C, Soldo P, Friess H
. Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis. Arch Toxicol. 2014; 88(4):997-1006.
DOI: 10.1007/s00204-013-1191-5.
View
7.
Hoehme S, Brulport M, Bauer A, Bedawy E, Schormann W, Hermes M
. Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci U S A. 2010; 107(23):10371-6.
PMC: 2890786.
DOI: 10.1073/pnas.0909374107.
View
8.
Chen R, Wu H, Wang Y
. Strategies to prevent and reverse liver fibrosis in humans and laboratory animals. Arch Toxicol. 2015; 89(10):1727-50.
DOI: 10.1007/s00204-015-1525-6.
View
9.
Vartak N, Damle-Vartak A, Richter B, Dirsch O, Dahmen U, Hammad S
. Cholestasis-induced adaptive remodeling of interlobular bile ducts. Hepatology. 2015; 63(3):951-64.
PMC: 5066759.
DOI: 10.1002/hep.28373.
View
10.
Moghbel M, Mashohor S, Mahmud R, Iqbal Bin Saripan M
. Automatic liver segmentation on Computed Tomography using random walkers for treatment planning. EXCLI J. 2017; 15:500-517.
PMC: 5225683.
DOI: 10.17179/excli2016-473.
View
11.
Jansen P, Ghallab A, Vartak N, Reif R, Schaap F, Hampe J
. The ascending pathophysiology of cholestatic liver disease. Hepatology. 2016; 65(2):722-738.
DOI: 10.1002/hep.28965.
View
12.
Drasdo D, Hoehme S, Hengstler J
. How predictive quantitative modelling of tissue organisation can inform liver disease pathogenesis. J Hepatol. 2014; 61(4):951-6.
DOI: 10.1016/j.jhep.2014.06.013.
View
13.
Crespo Yanguas S, Willebrords J, Maes M, Da Silva T, Pereira I, Cogliati B
. Connexins and pannexins in liver damage. EXCLI J. 2016; 15:177-86.
PMC: 4822047.
DOI: 10.17179/excli2016-119.
View
14.
Reif R, Ghallab A, Beattie L, Gunther G, Kuepfer L, Kaye P
. In vivo imaging of systemic transport and elimination of xenobiotics and endogenous molecules in mice. Arch Toxicol. 2016; 91(3):1335-1352.
PMC: 5316407.
DOI: 10.1007/s00204-016-1906-5.
View
15.
Ghallab A, Celliere G, Henkel S, Driesch D, Hoehme S, Hofmann U
. Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases. J Hepatol. 2015; 64(4):860-71.
DOI: 10.1016/j.jhep.2015.11.018.
View
16.
Bartl M, Pfaff M, Ghallab A, Driesch D, Henkel S, Hengstler J
. Optimality in the zonation of ammonia detoxification in rodent liver. Arch Toxicol. 2015; 89(11):2069-78.
DOI: 10.1007/s00204-015-1596-4.
View
17.
Crespo Yanguas S, Cogliati B, Willebrords J, Maes M, Colle I, Van den Bossche B
. Experimental models of liver fibrosis. Arch Toxicol. 2015; 90(5):1025-1048.
PMC: 4705434.
DOI: 10.1007/s00204-015-1543-4.
View
18.
Braeuning A, Schwarz M
. Is the question of phenobarbital as potential liver cancer risk factor for humans really resolved?. Arch Toxicol. 2016; 90(6):1525-6.
DOI: 10.1007/s00204-016-1712-0.
View
19.
Hammad S, Hoehme S, Friebel A, von Recklinghausen I, Othman A, Begher-Tibbe B
. Protocols for staining of bile canalicular and sinusoidal networks of human, mouse and pig livers, three-dimensional reconstruction and quantification of tissue microarchitecture by image processing and analysis. Arch Toxicol. 2014; 88(5):1161-83.
PMC: 3996365.
DOI: 10.1007/s00204-014-1243-5.
View
20.
Campos G, Schmidt-Heck W, Ghallab A, Rochlitz K, Putter L, Medinas D
. The transcription factor CHOP, a central component of the transcriptional regulatory network induced upon CCl4 intoxication in mouse liver, is not a critical mediator of hepatotoxicity. Arch Toxicol. 2014; 88(6):1267-80.
DOI: 10.1007/s00204-014-1240-8.
View