» Articles » PMID: 29323499

Nanometer Resolution Elemental Mapping in Graphene-Based TEM Liquid Cells

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2018 Jan 12
PMID 29323499
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

We demonstrate a new design of graphene liquid cell consisting of a thin lithographically patterned hexagonal boron nitride crystal encapsulated on both sides with graphene windows. The ultrathin window liquid cells produced have precisely controlled volumes and thicknesses and are robust to repeated vacuum cycling. This technology enables exciting new opportunities for liquid cell studies, providing a reliable platform for high resolution transmission electron microscope imaging and spectral mapping. The presence of water was confirmed using electron energy loss spectroscopy (EELS) via the detection of the oxygen K-edge and measuring the thickness of full and empty cells. We demonstrate the imaging capabilities of these liquid cells by tracking the dynamic motion and interactions of small metal nanoparticles with diameters of 0.5-5 nm. We further present an order of magnitude improvement in the analytical capabilities compared to previous liquid cell data with 1 nm spatial resolution elemental mapping achievable for liquid encapsulated bimetallic nanoparticles using energy dispersive X-ray spectroscopy (EDXS).

Citing Articles

Micrometer-Scale Graphene-Based Liquid Cells of Highly Concentrated Salt Solutions for In Situ Liquid-Cell Transmission Electron Microscopy.

Yashima Y, Yamazaki T, Kimura Y ACS Omega. 2024; 9(38):39914-39924.

PMID: 39346859 PMC: 11425617. DOI: 10.1021/acsomega.4c05477.


Liquid Phase Electron Microscopy of Bacterial Ultrastructure.

Caffrey B, Pedrazo-Tardajos A, Liberti E, Gaunt B, Kim J, Kirkland A Small. 2024; 20(50):e2402871.

PMID: 39239997 PMC: 11636060. DOI: 10.1002/smll.202402871.


Nanopipette dynamic microscopy unveils nano coffee ring.

Zhang D, Shao Y, Zhou J, Zhan Q, Wen Z, Mao S Proc Natl Acad Sci U S A. 2024; 121(28):e2314320121.

PMID: 38954540 PMC: 11252805. DOI: 10.1073/pnas.2314320121.


Direct visualization of ligands on gold nanoparticles in a liquid environment.

Pedrazo-Tardajos A, Claes N, Wang D, Sanchez-Iglesias A, Nandi P, Jenkinson K Nat Chem. 2024; 16(8):1278-1285.

PMID: 38937593 DOI: 10.1038/s41557-024-01574-1.


Improved ACOM pattern matching in 4D-STEM through adaptive sub-pixel peak detection and image reconstruction.

Folastre N, Cao J, Oney G, Park S, Jamali A, Masquelier C Sci Rep. 2024; 14(1):12385.

PMID: 38811806 PMC: 11137144. DOI: 10.1038/s41598-024-63060-5.


References
1.
Kennedy E, Nelson E, Tanaka T, Damiano J, Timp G . Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy. ACS Nano. 2016; 10(2):2669-77. DOI: 10.1021/acsnano.5b07697. View

2.
Lee G, Cooper R, An S, Lee S, van der Zande A, Petrone N . High-strength chemical-vapor-deposited graphene and grain boundaries. Science. 2013; 340(6136):1073-6. DOI: 10.1126/science.1235126. View

3.
Abellan P, Mehdi B, Parent L, Gu M, Park C, Xu W . Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett. 2014; 14(3):1293-9. DOI: 10.1021/nl404271k. View

4.
Georgakilas V, Otyepka M, Bourlinos A, Chandra V, Kim N, Kemp K . Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012; 112(11):6156-214. DOI: 10.1021/cr3000412. View

5.
Yuk J, Park J, Ercius P, Kim K, Hellebusch D, Crommie M . High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science. 2012; 336(6077):61-4. DOI: 10.1126/science.1217654. View