Murzaev R, Krylova K, Baimova J
Materials (Basel). 2023; 16(10).
PMID: 37241373
PMC: 10220664.
DOI: 10.3390/ma16103747.
Ma X, Liu J, Fan Y, Li W, Hu J, Zhao M
Nanoscale Adv. 2022; 3(15):4554-4560.
PMID: 36133463
PMC: 9417312.
DOI: 10.1039/d1na00212k.
Wang B, Wang Y, Wang G, Zhang Q
RSC Adv. 2022; 9(10):5865-5869.
PMID: 35515905
PMC: 9060803.
DOI: 10.1039/c8ra09265f.
Kalosakas G, Lathiotakis N, Papagelis K
Materials (Basel). 2022; 15(1).
PMID: 35009214
PMC: 8746274.
DOI: 10.3390/ma15010067.
Wei Y, Yang R
Natl Sci Rev. 2021; 6(2):324-348.
PMID: 34691872
PMC: 8291593.
DOI: 10.1093/nsr/nwy067.
Width Dependent Elastic Properties of Graphene Nanoribbons.
Kalosakas G, Lathiotakis N, Papagelis K
Materials (Basel). 2021; 14(17).
PMID: 34501132
PMC: 8433791.
DOI: 10.3390/ma14175042.
Anomalous versus Normal Room-Temperature Diffusion of Metal Adatoms on Graphene.
Gervilla V, Zarshenas M, Sangiovanni D, Sarakinos K
J Phys Chem Lett. 2020; 11(21):8930-8936.
PMID: 32986445
PMC: 7649840.
DOI: 10.1021/acs.jpclett.0c02375.
Temperature-Dependent Mechanical Properties of Graphene/Cu Nanocomposites with In-Plane Negative Poisson's Ratios.
Fan Y, Xiang Y, Shen H
Research (Wash D C). 2020; 2020:5618021.
PMID: 32110779
PMC: 7025046.
DOI: 10.34133/2020/5618021.
Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures.
Zhao K, Zhang T, Chang H, Yang Y, Xiao P, Zhang H
Sci Adv. 2019; 5(4):eaav2589.
PMID: 30993202
PMC: 6461457.
DOI: 10.1126/sciadv.aav2589.
The Thermal, Electrical and ThermoelectricProperties of Graphene Nanomaterials.
Wang J, Mu X, Sun M
Nanomaterials (Basel). 2019; 9(2).
PMID: 30736378
PMC: 6410242.
DOI: 10.3390/nano9020218.
Advancing the Use of High-Performance Graphene-Based Multimodal Polymer Nanocomposite at Scale.
Ahmad I, Koziol K, Deveci S, Kim H, Kumar R
Nanomaterials (Basel). 2018; 8(11).
PMID: 30453602
PMC: 6266415.
DOI: 10.3390/nano8110947.
Structure of graphene and its disorders: a review.
Yang G, Li L, Lee W, Ng M
Sci Technol Adv Mater. 2018; 19(1):613-648.
PMID: 30181789
PMC: 6116708.
DOI: 10.1080/14686996.2018.1494493.
Nanometer Resolution Elemental Mapping in Graphene-Based TEM Liquid Cells.
Kelly D, Zhou M, Clark N, Hamer M, Lewis E, Rakowski A
Nano Lett. 2018; 18(2):1168-1174.
PMID: 29323499
PMC: 5821409.
DOI: 10.1021/acs.nanolett.7b04713.
A perspective on auxetic nanomaterials.
Park H, Kim S
Nano Converg. 2017; 4(1):10.
PMID: 28473953
PMC: 5392538.
DOI: 10.1186/s40580-017-0104-3.
Attractive force-driven superhardening of graphene membranes as a pin-point breaking of continuum mechanics.
Ashino M, Wiesendanger R
Sci Rep. 2017; 7:46083.
PMID: 28417957
PMC: 5394694.
DOI: 10.1038/srep46083.
Origin of band gaps in graphene on hexagonal boron nitride.
Jung J, DaSilva A, MacDonald A, Adam S
Nat Commun. 2015; 6:6308.
PMID: 25695638
PMC: 4346636.
DOI: 10.1038/ncomms7308.
New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology.
Peng Q, Dearden A, Crean J, Han L, Liu S, Wen X
Nanotechnol Sci Appl. 2014; 7:1-29.
PMID: 24808721
PMC: 3998860.
DOI: 10.2147/NSA.S40324.
Controlled ripple texturing of suspended graphene and ultrathin graphite membranes.
Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C
Nat Nanotechnol. 2009; 4(9):562-6.
PMID: 19734927
DOI: 10.1038/nnano.2009.191.