» Articles » PMID: 29316146

Modifying the Steric Properties in the Second Coordination Sphere of Designed Peptides Leads to Enhancement of Nitrite Reductase Activity

Overview
Specialty Chemistry
Date 2018 Jan 10
PMID 29316146
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Protein design is a useful strategy to interrogate the protein structure-function relationship. We demonstrate using a highly modular 3-stranded coiled coil (TRI-peptide system) that a functional type 2 copper center exhibiting copper nitrite reductase (NiR) activity exhibits the highest homogeneous catalytic efficiency under aqueous conditions for the reduction of nitrite to NO and H O. Modification of the amino acids in the second coordination sphere of the copper center increases the nitrite reductase activity up to 75-fold compared to previously reported systems. We find also that steric bulk can be used to enforce a three-coordinate Cu in a site, which tends toward two-coordination with decreased steric bulk. This study demonstrates the importance of the second coordination sphere environment both for controlling metal-center ligation and enhancing the catalytic efficiency of metalloenzymes and their analogues.

Citing Articles

Discussing the Terms Biomimetic and Bioinspired within Bioinorganic Chemistry.

Engbers S, van Langevelde P, Hetterscheid D, Klein J Inorg Chem. 2024; 63(43):20057-20067.

PMID: 39307983 PMC: 11523218. DOI: 10.1021/acs.inorgchem.4c01070.


Revving up a Designed Copper Nitrite Reductase Using Non-Coded Active Site Ligands.

Pitts W, Deb A, Penner-Hahn J, Pecoraro V ACS Catal. 2024; 14(6):4362-4368.

PMID: 39157175 PMC: 11329067. DOI: 10.1021/acscatal.3c06159.


Application of artificial backbone connectivity in the development of metalloenzyme mimics.

Wolfe J, Seth Horne W Curr Opin Chem Biol. 2024; 81:102509.

PMID: 39098212 PMC: 11345794. DOI: 10.1016/j.cbpa.2024.102509.


Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.

Van Stappen C, Deng Y, Liu Y, Heidari H, Wang J, Zhou Y Chem Rev. 2022; 122(14):11974-12045.

PMID: 35816578 PMC: 10199331. DOI: 10.1021/acs.chemrev.2c00106.


De novo metalloprotein design.

Chalkley M, Mann S, DeGrado W Nat Rev Chem. 2022; 6(1):31-50.

PMID: 35811759 PMC: 9264687. DOI: 10.1038/s41570-021-00339-5.


References
1.
Ghosh D, Pecoraro V . Understanding metalloprotein folding using a de novo design strategy. Inorg Chem. 2004; 43(25):7902-15. DOI: 10.1021/ic048939z. View

2.
Dieckmann G, McRorie D, Lear J, Sharp K, Degrado W, Pecoraro V . The role of protonation and metal chelation preferences in defining the properties of mercury-binding coiled coils. J Mol Biol. 1998; 280(5):897-912. DOI: 10.1006/jmbi.1998.1891. View

3.
Yu F, Cangelosi V, Zastrow M, Tegoni M, Plegaria J, Tebo A . Protein design: toward functional metalloenzymes. Chem Rev. 2014; 114(7):3495-578. PMC: 4300145. DOI: 10.1021/cr400458x. View

4.
MacPherson I, Murphy M . Type-2 copper-containing enzymes. Cell Mol Life Sci. 2007; 64(22):2887-99. PMC: 11136349. DOI: 10.1007/s00018-007-7310-9. View

5.
Tegoni M, Yu F, Bersellini M, Penner-Hahn J, Pecoraro V . Designing a functional type 2 copper center that has nitrite reductase activity within α-helical coiled coils. Proc Natl Acad Sci U S A. 2012; 109(52):21234-9. PMC: 3535669. DOI: 10.1073/pnas.1212893110. View