» Articles » PMID: 29303480

A Postsynaptic PI3K-cII Dependent Signaling Controller for Presynaptic Homeostatic Plasticity

Overview
Journal Elife
Specialty Biology
Date 2018 Jan 6
PMID 29303480
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Presynaptic homeostatic plasticity stabilizes information transfer at synaptic connections in organisms ranging from insect to human. By analogy with principles of engineering and control theory, the molecular implementation of PHP is thought to require postsynaptic signaling modules that encode homeostatic sensors, a set point, and a controller that regulates transsynaptic negative feedback. The molecular basis for these postsynaptic, homeostatic signaling elements remains unknown. Here, an electrophysiology-based screen of the kinome and phosphatome defines a postsynaptic signaling platform that includes a required function for PI3K-cII, PI3K-cIII and the small GTPase Rab11 during the rapid and sustained expression of PHP. We present evidence that PI3K-cII localizes to Golgi-derived, clathrin-positive vesicles and is necessary to generate an endosomal pool of PI(3)P that recruits Rab11 to recycling endosomal membranes. A morphologically distinct subdivision of this platform concentrates postsynaptically where we propose it functions as a homeostatic controller for retrograde, trans-synaptic signaling.

Citing Articles

Mitochondrial Complex I and ROS control synapse function through opposing pre- and postsynaptic mechanisms.

Mallik B, Frank C bioRxiv. 2025; .

PMID: 39803545 PMC: 11722341. DOI: 10.1101/2024.12.30.630694.


Using Electrophysiology to Study Homeostatic Plasticity at the Neuromuscular Junction.

Wang T, Frank C Cold Spring Harb Protoc. 2024; .

PMID: 38688539 PMC: 11522024. DOI: 10.1101/pdb.top108393.


Dysregulated glial genes in Alzheimer's disease are essential for homeostatic plasticity: Evidence from integrative epigenetic and single cell analyses.

Cai Y, Cui T, Yin P, Paganelli P, Vicini S, Wang T Aging Cell. 2023; 22(11):e13989.

PMID: 37712202 PMC: 10652298. DOI: 10.1111/acel.13989.


NMDAR-dependent presynaptic homeostasis in adult hippocampus: Synapse growth and cross-modal inhibitory plasticity.

Chipman P, Fetter R, Panzera L, Bergerson S, Karmelic D, Yokoyama S Neuron. 2022; 110(20):3302-3317.e7.

PMID: 36070750 PMC: 9588671. DOI: 10.1016/j.neuron.2022.08.014.


Distinct molecular pathways govern presynaptic homeostatic plasticity.

Nair A, Muttathukunnel P, Muller M Cell Rep. 2021; 37(11):110105.

PMID: 34910905 PMC: 8692748. DOI: 10.1016/j.celrep.2021.110105.


References
1.
Mahr A, Aberle H . The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain. Gene Expr Patterns. 2005; 6(3):299-309. DOI: 10.1016/j.modgep.2005.07.006. View

2.
Kauwe G, Tsurudome K, Penney J, Mori M, Gray L, Calderon M . Acute Fasting Regulates Retrograde Synaptic Enhancement through a 4E-BP-Dependent Mechanism. Neuron. 2016; 92(6):1204-1212. PMC: 5797711. DOI: 10.1016/j.neuron.2016.10.063. View

3.
Lawe D, Sitouah N, Hayes S, Chawla A, Virbasius J, Tuft R . Essential role of Ca2+/calmodulin in Early Endosome Antigen-1 localization. Mol Biol Cell. 2003; 14(7):2935-45. PMC: 165688. DOI: 10.1091/mbc.e02-09-0591. View

4.
Falasca M, Hughes W, Dominguez V, Sala G, Fostira F, Fang M . The role of phosphoinositide 3-kinase C2alpha in insulin signaling. J Biol Chem. 2007; 282(38):28226-36. DOI: 10.1074/jbc.M704357200. View

5.
Dickman D, Davis G . The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science. 2009; 326(5956):1127-30. PMC: 3063306. DOI: 10.1126/science.1179685. View