» Articles » PMID: 29298051

CRISPRed Macrophages for Cell-Based Cancer Immunotherapy

Overview
Journal Bioconjug Chem
Specialty Biochemistry
Date 2018 Jan 4
PMID 29298051
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

We present here an integrated nanotechnology/biology strategy for cancer immunotherapy that uses arginine nanoparticles (ArgNPs) to deliver CRISPR-Cas9 gene editing machinery into cells to generate SIRP-α knockout macrophages. The NP system efficiently codelivers single guide RNA (sgRNA) and Cas9 protein required for editing to knock out the "don't eat me signal" in macrophages that prevents phagocytosis of cancer cells. Turning off this signal increased the innate phagocytic capabilities of the macrophages by 4-fold. This improved attack and elimination of cancer cells makes this strategy promising for the creation of "weaponized" macrophages for cancer immunotherapy.

Citing Articles

Are monocytes a preferable option to develop myeloid cell-based therapies for solid tumors?.

Bhatia D, Dolcetti R, Mazzieri R J Exp Clin Cancer Res. 2025; 44(1):98.

PMID: 40089746 DOI: 10.1186/s13046-025-03359-x.


Expanding the horizon of CAR T cell therapy: from cancer treatment to autoimmune diseases and beyond.

Yang Z, Ha B, Wu Q, Ren F, Yin Z, Zhang H Front Immunol. 2025; 16:1544532.

PMID: 40046061 PMC: 11880241. DOI: 10.3389/fimmu.2025.1544532.


Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine.

Azeez S, Hamad R, Hamad B, Shekha M, Bergsten P Front Genome Ed. 2024; 6:1509924.

PMID: 39726634 PMC: 11669675. DOI: 10.3389/fgeed.2024.1509924.


Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools.

Li R, Huang J, Wei Y, Wang Y, Lu C, Liu J Int J Nanomedicine. 2024; 19:13615-13651.

PMID: 39717515 PMC: 11665441. DOI: 10.2147/IJN.S491573.


Uricase-Expressing Engineered Macrophages Alleviate Murine Hyperuricemia.

Feng Y, Cheng H, Xiong G, Cui J, Chen Z, Lu Y Biomedicines. 2024; 12(11).

PMID: 39595167 PMC: 11592275. DOI: 10.3390/biomedicines12112602.


References
1.
Chao M, Weissman I, Majeti R . The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012; 24(2):225-32. PMC: 3319521. DOI: 10.1016/j.coi.2012.01.010. View

2.
Chao M, Tang C, Pachynski R, Chin R, Majeti R, Weissman I . Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood. 2011; 118(18):4890-901. PMC: 3208297. DOI: 10.1182/blood-2011-02-338020. View

3.
Ran F, Hsu P, Wright J, Agarwala V, Scott D, Zhang F . Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013; 8(11):2281-2308. PMC: 3969860. DOI: 10.1038/nprot.2013.143. View

4.
Willingham S, Volkmer J, Gentles A, Sahoo D, Dalerba P, Mitra S . The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A. 2012; 109(17):6662-7. PMC: 3340046. DOI: 10.1073/pnas.1121623109. View

5.
Ray M, Tang R, Jiang Z, Rotello V . Quantitative tracking of protein trafficking to the nucleus using cytosolic protein delivery by nanoparticle-stabilized nanocapsules. Bioconjug Chem. 2015; 26(6):1004-7. PMC: 4743495. DOI: 10.1021/acs.bioconjchem.5b00141. View