» Articles » PMID: 29266182

Identification of Mechanisms of Resistance to Treatment with Abiraterone Acetate or Enzalutamide in Patients with Castration-resistant Prostate Cancer (CRPC)

Overview
Journal Cancer
Publisher Wiley
Specialty Oncology
Date 2017 Dec 22
PMID 29266182
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Two androgen receptor (AR)-targeted therapies, enzalutamide and abiraterone acetate plus prednisone (abiraterone), have been approved for the treatment of metastatic castration-resistant prostate cancer (CRPC). Many patients respond to these agents, but both de novo and acquired resistance are common. The authors characterized resistant phenotypes that emerge after treatment with abiraterone or enzalutamide.

Methods: Patients who received abiraterone or enzalutamide in the course of routine clinical care were consented for serial blood collection. A proprietary system (CellSearch) was used to enumerate and enrich circulating tumor cells (CTCs). RNA-sequencing (RNA-seq) was performed on pools of up to 10 epithelial cell adhesion molecule (EpCAM)-positive/CD45-negative CTCs. The impact of gene expression changes observed in CTCs between patients who responded or were resistant to abiraterone/enzalutamide therapies was further explored in a model cell line system.

Results: RNA-seq data from CTCs identified mutations commonly associated with CRPC as well as novel mutations, including several in the ligand-binding domain of AR that could facilitate escape from AR-targeted agents. Ingenuity pathway analysis of differentially regulated genes identified the transforming growth factor β (TGFβ) and cyclin D1 (CCND1) signaling pathways as significantly upregulated in drug-resistant CTCs. Transfection experiments using enzalutamide-sensitive and enzalutamide-resistant LNCaP cells confirmed the involvement of SMAD family member 3, a key mediator of the TGFβ pathway, and of CCND1 in resistance to enzalutamide treatment.

Conclusions: The current results indicate that RNA-seq of CTCs representing abiraterone and enzalutamide sensitive and resistant states can identify potential mechanisms of resistance. Therapies targeting the downstream signaling mediated by SMAD family member 3 (SMAD3) and CCND1, such as cyclin-dependent kinase 4/cyclin-dependent kinase 6 inhibitors, could provide new therapeutic options for the treatment of antiandrogen-resistant disease. Cancer 2018;124:1216-24. © 2017 American Cancer Society.

Citing Articles

BCL2 expression is enriched in advanced prostate cancer with features of lineage plasticity.

Westaby D, Jimenez-Vacas J, Figueiredo I, Rekowski J, Pettinger C, Gurel B J Clin Invest. 2024; 134(18).

PMID: 39286979 PMC: 11405043. DOI: 10.1172/JCI179998.


AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer.

Sardar S, McNair C, Ravindranath L, Chand S, Yuan W, Bogdan D Oncogene. 2024; 43(43):3197-3213.

PMID: 39266679 PMC: 11493679. DOI: 10.1038/s41388-024-03148-4.


AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer.

Sardar S, McNair C, Ravindranath L, Chand S, Yuan W, Bogdan D bioRxiv. 2024; .

PMID: 38766099 PMC: 11100730. DOI: 10.1101/2024.05.07.592966.


A Signal-Finding Study of Abemaciclib in Heavily Pretreated Patients with Metastatic Castration-Resistant Prostate Cancer: Results from CYCLONE 1.

Agarwal N, Castellano D, Alonso-Gordoa T, Arranz Arija J, Colomba E, Gravis G Clin Cancer Res. 2024; 30(11):2377-2383.

PMID: 38512117 PMC: 11145166. DOI: 10.1158/1078-0432.CCR-23-3436.


A Phase Ib/II study of IGF-neutralising antibody xentuzumab with enzalutamide in metastatic castration-resistant prostate cancer.

Macaulay V, Lord S, Hussain S, Maroto J, Jones R, Climent M Br J Cancer. 2023; 129(6):965-973.

PMID: 37537253 PMC: 10491782. DOI: 10.1038/s41416-023-02380-1.