» Articles » PMID: 29258922

Flow Virometry As a Tool to Study Viruses

Overview
Journal Methods
Specialty Biochemistry
Date 2017 Dec 21
PMID 29258922
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

In the last few decades, flow cytometry has redefined the field of biology, exponentially enhancing our understanding of cells, immunology, and microbiology. Flow cytometry recently gave birth to flow virometry, a new way to detect, analyze, and characterize single viral particles. Detection of viruses by flow cytometry is possible due to improvements in current flow cytometers, calibration, and tuning methods. We summarize the recent birth and novel uses of flow virometry and the progressive evolution of this tool to advance the field of virology. We also discuss the various flow virometry methods used to identify and analyze viruses. We briefly summarize other applications of flow virometry, including: virus detection, quantification, population discrimination, and viral particles' antigenic properties. Finally, we summarize how viral sorting will allow further progress of flow virometry to relate viral surface characteristics to infectivity properties.

Citing Articles

Imaging Flow Cytometry in HIV Infection Research: Advantages and Opportunities.

Elfimov K, Baboshko D, Gashnikova N Methods Protoc. 2025; 8(1).

PMID: 39997638 PMC: 11858172. DOI: 10.3390/mps8010014.


Flow virometry: recent advancements, best practices, and future frontiers.

Fernandes C, Persaud A, Chaphekhar D, Burnie J, Belanger C, Tang V J Virol. 2025; 99(2):e0171724.

PMID: 39868829 PMC: 11853038. DOI: 10.1128/jvi.01717-24.


Rapid and specific detection of nanoparticles and viruses one at a time using microfluidic laminar flow and confocal fluorescence microscopy.

Drori P, Mouhadeb O, Moya Munoz G, Razvag Y, Alcalay R, Klocke P iScience. 2024; 27(10):110982.

PMID: 39391727 PMC: 11466642. DOI: 10.1016/j.isci.2024.110982.


Single-molecule detection and super-resolution imaging with a portable and adaptable 3D-printed microscopy platform (Brick-MIC).

Moya Munoz G, Brix O, Klocke P, Harris P, Luna Piedra J, Wendler N Sci Adv. 2024; 10(39):eado3427.

PMID: 39321299 PMC: 11423890. DOI: 10.1126/sciadv.ado3427.


Comparison of interferometric light microscopy with nanoparticle tracking analysis for the study of extracellular vesicles and bacteriophages.

Sausset R, Krupova Z, Guedon E, Peron S, Grangier A, Petit M J Extracell Biol. 2024; 2(2):e75.

PMID: 38938523 PMC: 11080698. DOI: 10.1002/jex2.75.


References
1.
Zhou J, Ghoroghi S, Benito-Martin A, Wu H, Unachukwu U, Einbond L . Characterization of Induced Pluripotent Stem Cell Microvesicle Genesis, Morphology and Pluripotent Content. Sci Rep. 2016; 6:19743. PMC: 4726265. DOI: 10.1038/srep19743. View

2.
El Bilali N, Duron J, Gingras D, Lippe R . Quantitative Evaluation of Protein Heterogeneity within Herpes Simplex Virus 1 Particles. J Virol. 2017; 91(10). PMC: 5411592. DOI: 10.1128/JVI.00320-17. View

3.
Yan X, Zhong W, Tang A, Schielke E, Hang W, Nolan J . Multiplexed flow cytometric immunoassay for influenza virus detection and differentiation. Anal Chem. 2005; 77(23):7673-8. DOI: 10.1021/ac0508797. View

4.
Khalil J, Langlois T, Andreani J, Sorraing J, Raoult D, Camoin L . Flow Cytometry Sorting to Separate Viable Giant Viruses from Amoeba Co-culture Supernatants. Front Cell Infect Microbiol. 2017; 6:202. PMC: 5216029. DOI: 10.3389/fcimb.2016.00202. View

5.
Brussaard C . Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol. 2004; 70(3):1506-13. PMC: 368280. DOI: 10.1128/AEM.70.3.1506-1513.2004. View