» Articles » PMID: 29234015

High-Resolution Single Particle Zeta Potential Characterisation of Biological Nanoparticles Using Tunable Resistive Pulse Sensing

Overview
Journal Sci Rep
Specialty Science
Date 2017 Dec 14
PMID 29234015
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Physicochemical properties of nanoparticles, such as size, shape, surface charge, density, and porosity play a central role in biological interactions and hence accurate determination of these characteristics is of utmost importance. Here we propose tunable resistive pulse sensing for simultaneous size and surface charge measurements on a particle-by-particle basis, enabling the analysis of a wide spectrum of nanoparticles and their mixtures. Existing methodologies for measuring zeta potential of nanoparticles using resistive pulse sensing are significantly improved by including convection into the theoretical model. The efficacy of this methodology is demonstrated for a range of biological case studies, including measurements of mixed anionic, cationic liposomes, extracellular vesicles in plasma, and in situ time study of DNA immobilisation on the surface of magnetic nanoparticles. The high-resolution single particle size and zeta potential characterisation will provide a better understanding of nano-bio interactions, positively impacting nanomedicine development and their regulatory approval.

Citing Articles

The Role of Exosomes in Cancer Progression and Therapy.

Sergazy S, Seydahmetova R, Gulyayev A, Shulgau Z, Aljofan M Biology (Basel). 2025; 14(1).

PMID: 39857258 PMC: 11763171. DOI: 10.3390/biology14010027.


Targeting CHEK1: Ginsenosides-Rh2 and Cu2O@G-Rh2 nanoparticles in thyroid cancer.

Wang L, Wu X, Wang X, Dong M, Zhang H, Zhao P Cell Biol Toxicol. 2025; 41(1):30.

PMID: 39808342 PMC: 11732901. DOI: 10.1007/s10565-024-09961-7.


Development of amphiphilic self-assembled nucleolipid as BBB targeting probe based on SPECT.

Tiwari S, Chaturvedi S, Kaul A, Choudhary V, Barthelemy P, Mishra A Discov Nano. 2024; 19(1):210.

PMID: 39690348 PMC: 11652433. DOI: 10.1186/s11671-024-04129-y.


Current state of nanomedicine drug products: An industry perspective.

Clogston J, Foss W, Harris D, Oberoi H, Pan J, Pu E J Pharm Sci. 2024; 113(12):3395-3405.

PMID: 39276979 PMC: 11649492. DOI: 10.1016/j.xphs.2024.09.005.


Characterization of lipid-based nanomedicines at the single-particle level.

Chen C, Chen C, Li Y, Gu R, Yan X Fundam Res. 2024; 3(4):488-504.

PMID: 38933557 PMC: 11197724. DOI: 10.1016/j.fmre.2022.09.011.


References
1.
Kozak D, Anderson W, Vogel R, Chen S, Antaw F, Trau M . Simultaneous size and ζ-potential measurements of individual nanoparticles in dispersion using size-tunable pore sensors. ACS Nano. 2012; 6(8):6990-7. DOI: 10.1021/nn3020322. View

2.
Whiteaker J, Zhao L, Zhang H, Feng L, Piening B, Anderson L . Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers. Anal Biochem. 2007; 362(1):44-54. PMC: 1852426. DOI: 10.1016/j.ab.2006.12.023. View

3.
Blundell E, Vogel R, Platt M . Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing. Langmuir. 2016; 32(4):1082-90. DOI: 10.1021/acs.langmuir.5b03024. View

4.
Ciaravino V, McCullough T, Cimino G, Sullivan T . Preclinical safety profile of plasma prepared using the INTERCEPT Blood System. Vox Sang. 2003; 85(3):171-82. DOI: 10.1046/j.1423-0410.2003.00351.x. View

5.
Raposo G, Stoorvogel W . Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013; 200(4):373-83. PMC: 3575529. DOI: 10.1083/jcb.201211138. View