» Articles » PMID: 29232017

Formation of PH-Resistant Monodispersed Polymer-Lipid Nanodiscs

Overview
Specialty Chemistry
Date 2017 Dec 13
PMID 29232017
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Polymer lipid nanodiscs are an invaluable system for structural and functional studies of membrane proteins in their near-native environment. Despite the recent advances in the development and usage of polymer lipid nanodisc systems, lack of control over size and poor tolerance to pH and divalent metal ions are major limitations for further applications. A facile modification of a low-molecular-weight styrene maleic acid copolymer is demonstrated to form monodispersed lipid bilayer nanodiscs that show ultra-stability towards divalent metal ion concentration over a pH range of 2.5 to 10. The macro-nanodiscs (>20 nm diameter) show magnetic alignment properties that can be exploited for high-resolution structural studies of membrane proteins and amyloid proteins using solid-state NMR techniques. The new polymer, SMA-QA, nanodisc is a robust membrane mimetic tool that offers significant advantages over currently reported nanodisc systems.

Citing Articles

Fabrication of membrane proteins in the form of native cell membrane nanoparticles using novel membrane active polymers.

Trinh T, Catalano C, Guo Y Nanoscale Adv. 2023; 5(21):5932-5940.

PMID: 37881706 PMC: 10597567. DOI: 10.1039/d3na00381g.


Sulfonated polystyrenes: pH and Mg-insensitive amphiphilic copolymers for detergent-free membrane protein isolation.

Janata M, Gupta S, cadova E, Angelisova P, Krishnarjuna B, Ramamoorthy A Eur Polym J. 2023; 198.

PMID: 37780808 PMC: 10538444. DOI: 10.1016/j.eurpolymj.2023.112412.


Label-free measurement of antimicrobial peptide interactions with lipid vesicles and nanodiscs using microscale thermophoresis.

Rainsford P, Rylandsholm F, Jakubec M, Silk M, Juskewitz E, Ericson J Sci Rep. 2023; 13(1):12619.

PMID: 37537266 PMC: 10400562. DOI: 10.1038/s41598-023-39785-0.


pH-tunable membrane-active polymers, NCMNP2a-, and their potential membrane protein applications.

Trinh T, Cabezas A, Joshi S, Catalano C, Siddique A, Qiu W Chem Sci. 2023; 14(26):7310-7326.

PMID: 37416719 PMC: 10321531. DOI: 10.1039/d3sc01890c.


A comparative characterisation of commercially available lipid-polymer nanoparticles formed from model membranes.

Sawczyc H, Heit S, Watts A Eur Biophys J. 2023; 52(1-2):39-51.

PMID: 36786921 PMC: 10039845. DOI: 10.1007/s00249-023-01632-5.


References
1.
Postis V, Rawson S, Mitchell J, Lee S, Parslow R, Dafforn T . The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. Biochim Biophys Acta. 2014; 1848(2):496-501. PMC: 4331651. DOI: 10.1016/j.bbamem.2014.10.018. View

2.
Ravula T, Ramadugu S, Mauro G, Ramamoorthy A . Bioinspired, Size-Tunable Self-Assembly of Polymer-Lipid Bilayer Nanodiscs. Angew Chem Int Ed Engl. 2017; 56(38):11466-11470. PMC: 5600881. DOI: 10.1002/anie.201705569. View

3.
Gao Y, Cao E, Julius D, Cheng Y . TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 2016; 534(7607):347-51. PMC: 4911334. DOI: 10.1038/nature17964. View

4.
Zhang M, Huang R, Ackermann R, Im S, Waskell L, Schwendeman A . Reconstitution of the Cytb5-CytP450 Complex in Nanodiscs for Structural Studies using NMR Spectroscopy. Angew Chem Int Ed Engl. 2016; 55(14):4497-9. DOI: 10.1002/anie.201600073. View

5.
Dvinskikh S, Yamamoto K, Durr U, Ramamoorthy A . Sensitivity and resolution enhancement in solid-state NMR spectroscopy of bicelles. J Magn Reson. 2006; 184(2):228-35. PMC: 1861833. DOI: 10.1016/j.jmr.2006.10.004. View