» Articles » PMID: 29221805

Skeletal Muscle Regenerative Potential of Human MuStem Cells Following Transplantation into Injured Mice Muscle

Abstract

After intra-arterial delivery in the dystrophic dog, allogeneic muscle-derived stem cells, termed MuStem cells, contribute to long-term stabilization of the clinical status and preservation of the muscle regenerative process. However, it remains unknown whether the human counterpart could be identified, considering recent demonstrations of divergent features between species for several somatic stem cells. Here, we report that MuStem cells reside in human skeletal muscle and display a long-term ability to proliferate, allowing generation of a clinically relevant amount of cells. Cultured human MuStem (hMuStem) cells do not express hematopoietic, endothelial, or myo-endothelial cell markers and reproducibly correspond to a population of early myogenic-committed progenitors with a perivascular/mesenchymal phenotypic signature, revealing a blood vessel wall origin. Importantly, they exhibit both myogenesis in vitro and skeletal muscle regeneration after intramuscular delivery into immunodeficient host mice. Together, our findings provide new insights supporting the notion that hMuStem cells could represent an interesting therapeutic candidate for dystrophic patients.

Citing Articles

Achieving myoblast engraftment into intact skeletal muscle via extracellular matrix.

Dohi K, Manabe Y, Fujii N, Furuichi Y Front Cell Dev Biol. 2025; 12:1502332.

PMID: 39877158 PMC: 11772487. DOI: 10.3389/fcell.2024.1502332.


Platelet-Rich Plasma Promotes the Expansion of Human Myoblasts and Favors the In Vitro Generation of Human Muscle Reserve Cells in a Deeper State of Quiescence.

Tollance A, Prola A, Michel D, Bouche A, Turzi A, Hannouche D Stem Cell Rev Rep. 2024; 20(7):1981-1994.

PMID: 39001964 PMC: 11445347. DOI: 10.1007/s12015-024-10760-0.


Recent Advances in Graphene Oxide-Based on Organoid Culture as Disease Model and Cell Behavior - A Systematic Literature Review.

Sulaksono H, Annisa A, Ruslami R, Mufeeduzzaman M, Panatarani C, Hermawan W Int J Nanomedicine. 2024; 19:6201-6228.

PMID: 38911499 PMC: 11193994. DOI: 10.2147/IJN.S455940.


Regenerative medicine: current research and perspective in pediatric surgery.

Deguchi K, Zambaiti E, De Coppi P Pediatr Surg Int. 2023; 39(1):167.

PMID: 37014468 PMC: 10073065. DOI: 10.1007/s00383-023-05438-6.


Cell Surface Proteins for Enrichment and Characterization of Human Pluripotent Stem Cell-Derived Myogenic Progenitors.

Tey S, Mueller M, Reilly M, Switalski C, Robertson S, Sakanaka-Yokoyama M Stem Cells Int. 2022; 2022:2735414.

PMID: 35251185 PMC: 8894063. DOI: 10.1155/2022/2735414.


References
1.
Zucconi E, Vieira N, Bueno Jr C, Secco M, Jazedje T, Costa Valadares M . Preclinical studies with umbilical cord mesenchymal stromal cells in different animal models for muscular dystrophy. J Biomed Biotechnol. 2011; 2011:715251. PMC: 3139201. DOI: 10.1155/2011/715251. View

2.
Delorme B, Charbord P . Culture and characterization of human bone marrow mesenchymal stem cells. Methods Mol Med. 2007; 140:67-81. DOI: 10.1007/978-1-59745-443-8_4. View

3.
Vosshenrich C, Ranson T, Samson S, Corcuff E, Colucci F, Rosmaraki E . Roles for common cytokine receptor gamma-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J Immunol. 2005; 174(3):1213-21. DOI: 10.4049/jimmunol.174.3.1213. View

4.
Valentine B, COOPER B, Cummings J, de Lahunta A . Canine X-linked muscular dystrophy: morphologic lesions. J Neurol Sci. 1990; 97(1):1-23. DOI: 10.1016/0022-510x(90)90095-5. View

5.
Cossu G, Bianco P . Mesoangioblasts--vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev. 2003; 13(5):537-42. DOI: 10.1016/j.gde.2003.08.001. View