» Articles » PMID: 29202200

Alternative Start and Termination Sites of Transcription Drive Most Transcript Isoform Differences Across Human Tissues

Overview
Specialty Biochemistry
Date 2017 Dec 5
PMID 29202200
Citations 134
Authors
Affiliations
Soon will be listed here.
Abstract

Most human genes generate multiple transcript isoforms. The differential expression of these isoforms can help specify cell types. Diverse transcript isoforms arise from the use of alternative transcription start sites, polyadenylation sites and splice sites; however, the relative contribution of these processes to isoform diversity in normal human physiology is unclear. To address this question, we investigated cell type-dependent differences in exon usage of over 18 000 protein-coding genes in 23 cell types from 798 samples of the Genotype-Tissue Expression Project. We found that about half of the expressed genes displayed tissue-dependent transcript isoforms. Alternative transcription start and termination sites, rather than alternative splicing, accounted for the majority of tissue-dependent exon usage. We confirmed the widespread tissue-dependent use of alternative transcription start sites in a second, independent dataset, Cap Analysis of Gene Expression data from the FANTOM consortium. Moreover, our results indicate that most tissue-dependent splicing involves untranslated exons and therefore may not increase proteome complexity. Thus, alternative transcription start and termination sites are the principal drivers of transcript isoform diversity across tissues, and may underlie the majority of cell type specific proteomes and functions.

Citing Articles

mRNA Transcript Variants Expressed in Mammalian Cells.

Sharma Y, Vo K, Shila S, Paul A, Dahiya V, Fields P Int J Mol Sci. 2025; 26(3).

PMID: 39940824 PMC: 11817330. DOI: 10.3390/ijms26031052.


Predicting RNA-seq coverage from DNA sequence as a unifying model of gene regulation.

Linder J, Srivastava D, Yuan H, Agarwal V, Kelley D Nat Genet. 2025; .

PMID: 39779956 DOI: 10.1038/s41588-024-02053-6.


Piwi regulates the usage of alternative transcription start sites in the Drosophila ovary.

Chen J, Liu N, Qi H, Neuenkirchen N, Huang Y, Lin H Nucleic Acids Res. 2024; 53(1).

PMID: 39657757 PMC: 11724274. DOI: 10.1093/nar/gkae1160.


Challenges in identifying mRNA transcript starts and ends from long-read sequencing data.

Calvo-Roitberg E, Daniels R, Pai A Genome Res. 2024; 34(11):1719-1734.

PMID: 39567236 PMC: 11610588. DOI: 10.1101/gr.279559.124.


Re-appraising the evidence for the source, regulation and function of p53-family isoforms.

Lopez I, Valdivia I, Vojtesek B, Fahraeus R, Coates P Nucleic Acids Res. 2024; 52(20):12112-12129.

PMID: 39404067 PMC: 11551734. DOI: 10.1093/nar/gkae855.


References
1.
Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, OHanlon D, Sung H . An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell. 2011; 147(1):132-46. DOI: 10.1016/j.cell.2011.08.023. View

2.
Sendoel A, Dunn J, Rodriguez E, Naik S, Gomez N, Hurwitz B . Translation from unconventional 5' start sites drives tumour initiation. Nature. 2017; 541(7638):494-499. PMC: 5287289. DOI: 10.1038/nature21036. View

3.
Keren H, Lev-Maor G, Ast G . Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet. 2010; 11(5):345-55. DOI: 10.1038/nrg2776. View

4.
Wang E, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C . Alternative isoform regulation in human tissue transcriptomes. Nature. 2008; 456(7221):470-6. PMC: 2593745. DOI: 10.1038/nature07509. View

5.
Pal S, Gupta R, Kim H, Wickramasinghe P, Baubet V, Showe L . Alternative transcription exceeds alternative splicing in generating the transcriptome diversity of cerebellar development. Genome Res. 2011; 21(8):1260-72. PMC: 3149493. DOI: 10.1101/gr.120535.111. View