Tian Y, Liu P, Kong D, Nie Y, Xu H, Han X
BMC Plant Biol. 2025; 25(1):149.
PMID: 39910434
PMC: 11796262.
DOI: 10.1186/s12870-025-06171-z.
Shakir A, Geng M, Tian J, Wang R
Theor Appl Genet. 2025; 138(1):25.
PMID: 39786445
DOI: 10.1007/s00122-024-04811-w.
Zhao D, Zeng J, Jin H, Liu D, Yang L, Xia X
Theor Appl Genet. 2024; 137(12):261.
PMID: 39505770
DOI: 10.1007/s00122-024-04769-9.
Du B, Wu J, Wang Q, Sun C, Sun G, Zhou J
PLoS One. 2024; 19(5):e0303751.
PMID: 38768114
PMC: 11104655.
DOI: 10.1371/journal.pone.0303751.
Du B, Wu J, Wang M, Wu J, Sun C, Zhang X
Front Plant Sci. 2024; 14:1319889.
PMID: 38283973
PMC: 10811794.
DOI: 10.3389/fpls.2023.1319889.
Meta-QTL analysis in wheat: progress, challenges and opportunities.
Sharma D, Kumari A, Sharma P, Singh A, Sharma A, Mir Z
Theor Appl Genet. 2023; 136(12):247.
PMID: 37975911
DOI: 10.1007/s00122-023-04490-z.
Meta-QTLs, ortho-MQTLs, and candidate genes for thermotolerance in wheat ( L.).
Kumar S, Singh V, Saini D, Sharma H, Saripalli G, Kumar S
Mol Breed. 2023; 41(11):69.
PMID: 37309361
PMC: 10236124.
DOI: 10.1007/s11032-021-01264-7.
SyntenyViewer: a comparative genomics-driven translational research tool.
Flores R, Huneau C, Burlot L, Laine M, Kimmel E, Pommier C
Database (Oxford). 2023; 2023.
PMID: 37159239
PMC: 10167986.
DOI: 10.1093/database/baad027.
Deciphering key genomic regions controlling flag leaf size in wheat via integration of meta-QTL and in silico transcriptome assessment.
Kong B, Ma J, Zhang P, Chen T, Liu Y, Che Z
BMC Genomics. 2023; 24(1):33.
PMID: 36658498
PMC: 9854125.
DOI: 10.1186/s12864-023-09119-5.
Identification of quantitative trait loci (QTL) and meta-QTL analysis for kernel size-related traits in wheat (Triticum aestivum L.).
Ma J, Liu Y, Zhang P, Chen T, Tian T, Wang P
BMC Plant Biol. 2022; 22(1):607.
PMID: 36550393
PMC: 9784057.
DOI: 10.1186/s12870-022-03989-9.
Genome-wide meta-analysis of QTL for morphological related traits of flag leaf in bread wheat.
Du B, Wu J, Islam M, Sun C, Lu B, Wei P
PLoS One. 2022; 17(10):e0276602.
PMID: 36279291
PMC: 9591062.
DOI: 10.1371/journal.pone.0276602.
Consensus genomic regions associated with grain protein content in hexaploid and tetraploid wheat.
Saini P, Sheikh I, Saini D, Mir R, Dhaliwal H, Tyagi V
Front Genet. 2022; 13:1021180.
PMID: 36246648
PMC: 9554612.
DOI: 10.3389/fgene.2022.1021180.
Delineating meta-quantitative trait loci for anthracnose resistance in common bean ( L.).
Shafi S, Saini D, Khan M, Bawa V, Choudhary N, Dar W
Front Plant Sci. 2022; 13:966339.
PMID: 36092444
PMC: 9453441.
DOI: 10.3389/fpls.2022.966339.
Capturing Wheat Phenotypes at the Genome Level.
Hussain B, Akpinar B, Alaux M, Algharib A, Sehgal D, Ali Z
Front Plant Sci. 2022; 13:851079.
PMID: 35860541
PMC: 9289626.
DOI: 10.3389/fpls.2022.851079.
Unravelling consensus genomic regions associated with quality traits in wheat using meta-analysis of quantitative trait loci.
Gudi S, Saini D, Singh G, Halladakeri P, Kumar P, Shamshad M
Planta. 2022; 255(6):115.
PMID: 35508739
DOI: 10.1007/s00425-022-03904-4.
Meta-QTLs, ortho-MetaQTLs and candidate genes for grain Fe and Zn contents in wheat ( L.).
Singh R, Saripalli G, Gautam T, Kumar A, Jan I, Batra R
Physiol Mol Biol Plants. 2022; 28(3):637-650.
PMID: 35465199
PMC: 8986950.
DOI: 10.1007/s12298-022-01149-9.
Major Genomic Regions for Wheat Grain Weight as Revealed by QTL Linkage Mapping and Meta-Analysis.
Miao Y, Jing F, Ma J, Liu Y, Zhang P, Chen T
Front Plant Sci. 2022; 13:802310.
PMID: 35222467
PMC: 8866663.
DOI: 10.3389/fpls.2022.802310.
Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.).
Saini D, Srivastava P, Pal N, Gupta P
Theor Appl Genet. 2022; 135(3):1049-1081.
PMID: 34985537
DOI: 10.1007/s00122-021-04018-3.
Comparative Genomic Analysis of Quantitative Trait Loci Associated With Micronutrient Contents, Grain Quality, and Agronomic Traits in Wheat ( L.).
Shariatipour N, Heidari B, Tahmasebi A, Richards C
Front Plant Sci. 2021; 12:709817.
PMID: 34712248
PMC: 8546302.
DOI: 10.3389/fpls.2021.709817.
Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat.
Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P
Theor Appl Genet. 2021; 134(9):3083-3109.
PMID: 34142166
DOI: 10.1007/s00122-021-03881-4.