» Articles » PMID: 23535596

Draft Genome of the Wheat A-genome Progenitor Triticum Urartu

Abstract

Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m)A(m)), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.

Citing Articles

The TaWAK2-TaNAL1-TaDST pathway regulates leaf width via cytokinin signaling in wheat.

Du D, Li Z, Yuan J, He F, Li X, Wang N Sci Adv. 2024; 10(35):eadp5541.

PMID: 39196932 PMC: 11352840. DOI: 10.1126/sciadv.adp5541.


An Accurate Representation of the Number of bZIP Transcription Factors in the (Wheat) Genome and the Regulation of Functional Genes during Salt Stress.

Liu X, Sukumaran S, Viitanen E, Naik N, Hassan S, Aronsson H Curr Issues Mol Biol. 2024; 46(5):4417-4436.

PMID: 38785536 PMC: 11120151. DOI: 10.3390/cimb46050268.


Enrichment and Diversification of the Wheat Genome via Alien Introgression.

Boehm Jr J, Cai X Plants (Basel). 2024; 13(3).

PMID: 38337872 PMC: 10857235. DOI: 10.3390/plants13030339.


Evaluation and identification of powdery mildew-resistant genes in 137 wheat relatives.

Wang J, Xu H, Qie Y, Han R, Sun X, Zhao Y Front Genet. 2024; 15:1342239.

PMID: 38327832 PMC: 10847533. DOI: 10.3389/fgene.2024.1342239.


Genome-wide identification and expression analysis of the GASA gene family in Chinese cabbage (Brassica rapa L. ssp. pekinensis).

Sun B, Zhao X, Gao J, Li J, Xin Y, Zhao Y BMC Genomics. 2023; 24(1):668.

PMID: 37932701 PMC: 10629197. DOI: 10.1186/s12864-023-09773-9.


References
1.
Schnable P, Ware D, Fulton R, Stein J, Wei F, Pasternak S . The B73 maize genome: complexity, diversity, and dynamics. Science. 2009; 326(5956):1112-5. DOI: 10.1126/science.1178534. View

2.
Paterson A, Bowers J, Bruggmann R, Dubchak I, Grimwood J, Gundlach H . The Sorghum bicolor genome and the diversification of grasses. Nature. 2009; 457(7229):551-6. DOI: 10.1038/nature07723. View

3.
Bennett M, Smith J . Nuclear dna amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci. 1976; 274(933):227-74. DOI: 10.1098/rstb.1976.0044. View

4.
McFADDEN E, SEARS E . The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered. 2010; 37:81 107. DOI: 10.1093/oxfordjournals.jhered.a105590. View

5.
Mayer K, Waugh R, Brown J, Schulman A, Langridge P, Platzer M . A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012; 491(7426):711-6. DOI: 10.1038/nature11543. View