» Articles » PMID: 29178811

Cell-Extracellular Matrix Mechanobiology: Forceful Tools and Emerging Needs for Basic and Translational Research

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2017 Nov 28
PMID 29178811
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

Extracellular biophysical cues have a profound influence on a wide range of cell behaviors, including growth, motility, differentiation, apoptosis, gene expression, adhesion, and signal transduction. Cells not only respond to definitively mechanical cues from the extracellular matrix (ECM) but can also sometimes alter the mechanical properties of the matrix and hence influence subsequent matrix-based cues in both physiological and pathological processes. Interactions between cells and materials in vitro can modify cell phenotype and ECM structure, whether intentionally or inadvertently. Interactions between cell and matrix mechanics in vivo are of particular importance in a wide variety of disorders, including cancer, central nervous system injury, fibrotic diseases, and myocardial infarction. Both the in vitro and in vivo effects of this coupling between mechanics and biology hold important implications for clinical applications.

Citing Articles

Integrins as Key Mediators of Metastasis.

Caceres-Calle D, Torre-Cea I, Marcos-Zazo L, Carrera-Aguado I, Guerra-Paes E, Berlana-Galan P Int J Mol Sci. 2025; 26(3).

PMID: 39940673 PMC: 11816423. DOI: 10.3390/ijms26030904.


Targeting extracellular matrix stiffness for cancer therapy.

Feng X, Cao F, Wu X, Xie W, Wang P, Jiang H Front Immunol. 2024; 15():1467602.

PMID: 39697341 PMC: 11653020. DOI: 10.3389/fimmu.2024.1467602.


Biomimetic Hydrogel Strategies for Cancer Therapy.

Alshehri A, Wilson Jr O Gels. 2024; 10(7).

PMID: 39057460 PMC: 11275631. DOI: 10.3390/gels10070437.


GelMA hydrogel dual photo-crosslinking to dynamically modulate ECM stiffness.

Smits J, van der Pol A, Goumans M, Bouten C, Jorba I Front Bioeng Biotechnol. 2024; 12:1363525.

PMID: 38966190 PMC: 11222782. DOI: 10.3389/fbioe.2024.1363525.


Profiling native pulmonary basement membrane stiffness using atomic force microscopy.

Hartmann B, Fleischhauer L, Nicolau M, Jensen T, Taran F, Clausen-Schaumann H Nat Protoc. 2024; 19(5):1498-1528.

PMID: 38429517 DOI: 10.1038/s41596-024-00955-7.


References
1.
Browe D, Baumgarten C . Angiotensin II (AT1) receptors and NADPH oxidase regulate Cl- current elicited by beta1 integrin stretch in rabbit ventricular myocytes. J Gen Physiol. 2004; 124(3):273-87. PMC: 2233887. DOI: 10.1085/jgp.200409040. View

2.
Wegener K, Campbell I . Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions (review). Mol Membr Biol. 2008; 25(5):376-87. PMC: 3000922. DOI: 10.1080/09687680802269886. View

3.
Discher D, Janmey P, Wang Y . Tissue cells feel and respond to the stiffness of their substrate. Science. 2005; 310(5751):1139-43. DOI: 10.1126/science.1116995. View

4.
Kong F, Garcia A, Mould A, Humphries M, Zhu C . Demonstration of catch bonds between an integrin and its ligand. J Cell Biol. 2009; 185(7):1275-84. PMC: 2712956. DOI: 10.1083/jcb.200810002. View

5.
Houtchens G, Foster M, Desai T, Morgan E, Wong J . Combined effects of microtopography and cyclic strain on vascular smooth muscle cell orientation. J Biomech. 2008; 41(4):762-9. PMC: 2365919. DOI: 10.1016/j.jbiomech.2007.11.027. View