» Articles » PMID: 29138427

Laser Thinning and Patterning of MoS with Layer-by-Layer Precision

Overview
Journal Sci Rep
Specialty Science
Date 2017 Nov 16
PMID 29138427
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

The recently discovered novel properties of two dimensional materials largely rely on the layer-critical variation in their electronic structure and lattice symmetry. Achieving layer-by-layer precision patterning is thus crucial for junction fabrications and device engineering, which hitherto poses an unprecedented challenge. Here we demonstrate laser thinning and patterning with layer-by-layer precision in a two dimensional (2D) quantum material MoS. Monolayer, bilayer and trilayer of MoS films are produced with precise vertical and lateral control, which removes the extruding barrier for fabricating novel three dimensional (3D) devices composed of diverse layers and patterns. By tuning the laser fluence and exposure time we demonstrate producing MoS patterns with designed layer numbers. The underlying physics mechanism is identified to be temperature-dependent evaporation of the MoS lattice, verified by our measurements and calculations. Our investigation paves way for 3D device fabrication based on 2D layered quantum materials.

Citing Articles

Selective CW Laser Synthesis of MoS and Mixture of MoS and MoO from (NH)MoS Film.

Hurley N, Bhandari B, Kamau S, Gonzalez Rodriguez R, Squires B, Kaul A Micromachines (Basel). 2024; 15(2).

PMID: 38398986 PMC: 10892590. DOI: 10.3390/mi15020258.


Laser irradiation induced structural transformation in layered transition metal trichalcogenide nanoflakes.

Zhang H, Tu X, Wu Z, Guo J, Fei L, Liao X iScience. 2023; 26(10):107895.

PMID: 37766970 PMC: 10520514. DOI: 10.1016/j.isci.2023.107895.


Electron beam lithography for direct patterning of MoS on PDMS substrates.

Jumbert G, Placidi M, Alzina F, Sotomayor Torres C, Sledzinska M RSC Adv. 2022; 11(32):19908-19913.

PMID: 35479206 PMC: 9033649. DOI: 10.1039/d1ra00885d.


SLM-processed MoS/MoS nanocomposite for energy conversion/storage applications.

Alinejadian N, Kazemi S, Odnevall I Sci Rep. 2022; 12(1):5030.

PMID: 35322135 PMC: 8943036. DOI: 10.1038/s41598-022-08921-7.


In Situ Fabrication of Freestanding Single-Atom-Thick 2D Metal/Metallene and 2D Metal/ Metallene Oxide Membranes: Recent Developments.

Ta H, Mendes R, Liu Y, Yang X, Luo J, Bachmatiuk A Adv Sci (Weinh). 2021; 8(20):e2100619.

PMID: 34459155 PMC: 8529443. DOI: 10.1002/advs.202100619.


References
1.
Wang Q, Kalantar-Zadeh K, Kis A, Coleman J, Strano M . Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012; 7(11):699-712. DOI: 10.1038/nnano.2012.193. View

2.
Jariwala D, Sangwan V, Lauhon L, Marks T, Hersam M . Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano. 2014; 8(2):1102-20. DOI: 10.1021/nn500064s. View

3.
Sundaram R, Engel M, Lombardo A, Krupke R, Ferrari A, Avouris P . Electroluminescence in single layer MoS2. Nano Lett. 2013; 13(4):1416-21. DOI: 10.1021/nl400516a. View

4.
Wu J, Li H, Yin Z, Li H, Liu J, Cao X . Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. Small. 2013; 9(19):3314-9. DOI: 10.1002/smll.201301542. View

5.
Wu R, Zhang Y, Yan S, Bian F, Wang W, Bai X . Purely coherent nonlinear optical response in solution dispersions of graphene sheets. Nano Lett. 2011; 11(12):5159-64. DOI: 10.1021/nl2023405. View